Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//y=3x+1 thì \(\left\{{}\begin{matrix}m-3=3\\m+2< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=6\\m< >-1\end{matrix}\right.\)
=>m=6
b: (d): y=(m-3)x+m+2
=mx-3x+m+2
=m(x+1)-3x+2
Tọa độ điểm mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\cdot\left(-1\right)+2=3+2=5\end{matrix}\right.\)
c: y=(m-3)x+m+2
=>(m-3)x-y+m+2=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-3\right)+0\cdot\left(-1\right)+m+2\right|}{\sqrt{\left(m-3\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}=1\)
=>\(\sqrt{\left(m-3\right)^2+1}=\left|m+2\right|\)
=>\(\sqrt{\left(m-3\right)^2+1}=\sqrt{\left(m+2\right)^2}\)
=>\(\left(m-3\right)^2+1=\left(m+2\right)^2\)
=>\(m^2-6m+9+1=m^2+4m+4\)
=>-6m+10=4m+4
=>-10m=-6
=>\(m=\dfrac{3}{5}\left(nhận\right)\)
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
a:
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)
=>m+1=2
=>m=1
c:
(d'): y=(m+1)x+6
=>(m+1)x-y+6=0
Khoảng cách từ O đến (d') là:
\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)
Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)
=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)
=>\(\left(m+1\right)^2+1=2\)
=>\(\left(m+1\right)^2=1\)
=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
1, hoành độ giao điểm của hai điểm
\(\hept{\begin{cases}y=x+2\\y=-3x+4\end{cases}}\) là nghiệm của pt
\(\Leftrightarrow x+2=-3x+4\)
\(\Leftrightarrow x=\frac{1}{2}\) <=> y= 5/2
thay vào pt (d) <=> m= -3
2 bạn viết lại đề nhé
3 gọi điểm cố định mà (d) luôn đi qua là (x0;y0) với mọi m. khi đó pt
\(y._0=\left(m-2\right)x._0+2-m\) có nghiệm với mọi m
\(\Leftrightarrow mx._0-2x_0+2-m-y._0=0\)
\(\Leftrightarrow\left(x._0-1\right)m-y._0+2=0\)
để đồ thi đi qua điểm cố định với mọi m thì
\(\hept{\begin{cases}x_0-1=0\\-y_0+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=1\\y_0=2\end{cases}}}\)
d luôn đi qa (1;2)
Xét pthđ giao điểm của d1 và d2
x-4=2x+3
<=> x= -7
Thay x=-7 vào d1
y=-7-4=-11 => A(-7:-11) là giao điểm d1 và d2
Thay x=-7 vào d3 -> y=m(-7)+m+1=-6m+1=-11
- Để d1 d2 d3 đq -> A ∈∈d3
-> -6m+1=-11
-6m=-12
m=2
Vậy m=2 thì 3 đường thẳng d1 , d2 , d3 đq