Cho trước ba đoạn thẳng có độ dài tương ứng là m, n, p. Hãy dựng đoạn thẳng thứ tư có độ dài là q sao cho m n = p q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 1 đơn vị, OB = 2 đơn vị.
+ Trên tia Oy lấy điểm M sao cho OM = m.
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại C.
Khi đó đoạn thẳng OC chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
b)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 2 đơn vị, OB = 3 đơn vị
+ Trên tia Oy lấy điểm N sao cho ON = n.
+ Vẽ đường thẳng qua A và song song với NB cắt Oy tại D.
Khi đó đoạn thẳng OD chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
c)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = n đơn vị, OB = p đơn vị
+ Trên tia Oy lấy điểm M sao cho OM = m
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại E
Khi đó đoạn thẳng OE chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
*Cách dựng (hình a):
- Dựng góc vuông xOy.
- Trên tia Ox, dựng đoạn OA = a
- Trên tia Oy, dựng đoạn OB = b.
- Nối AB, ta có đoạn AB = a 2 + b 2 cần dựng
*Chứng minh:
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
A B 2 = O A 2 + O B 2 = a 2 + b 2
Suy ra: AB = a 2 + b 2
*Cách dựng (hình b):
- Dựng góc vuông xOy
- Trên tia Ox, dựng đoạn OA = b.
- Dựng cung tròn tâm A, bán kính bằng a cắt Oy tại B.
Ta có đoạn OB = a 2 - b 2 ( a > b ) cần dựng.
*Chứng minh:
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
A B 2 = O A 2 + O B 2 ⇒ O B 2 = A B 2 - O A 2 ⇒ a 2 - b 2
Suy ra: OB = a 2 - b 2
Bài này bn cũng gửi lâu rồi chắc bạn ko cận nửa đâu .
Nếu cần thì mk sẽ làm cho bn
* Cách dựng:
- Dựng hai tia chung gốc Ox và Oy phân biệt không đối nhau
- Trên tia Ox dựng đoạn OA = m và dựng đoạn AB = n sao cho A nằm giữa O và B
- Trên tia Oy dựng đoạn OC = p.
- Dựng đường thẳng AC
- Từ B dựng đường thẳng song song với AC cắt tia Oy tại D.
Đoạn thẳng CD = q cần dựng.
* Chứng minh:
Theo cách dựng, ta có: AC // BD.
Trong △ OBD ta có: AC // BD