K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Bạn tự vẽ hình 

Vì K là trung điểm của NI 

=> IK = NK 

Xét \(\Delta MNI\)ta có :

\(MN=MI\left(gt\right)\)

\(MK\)là cạnh chung

\(IK=NK\)

=> \(\Delta MNK=\Delta MIK\)

b, Vì \(\Delta MNK=\Delta MIK\) ta có :

\(\widehat{MKI}=\widehat{MKN}\)( 2 góc t/ư )

\(\Rightarrow\widehat{MKI}+\widehat{MKN}=180^0\)( t/c 2 góc kề bù )

\(\Rightarrow2\widehat{MKI}=2\widehat{MKN}=180^0\)

\(\Rightarrow\widehat{MKI}=\widehat{MKN}=90^0\)hay \(MK\perp NI\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

26 tháng 10 2021

Dễ thấy AB,AC là đường trung bình tam giác NMI 

Do đó \(AC=\dfrac{1}{2}MI=MB\) (B là trung điểm MI) và AC//MI hay AC//MB

Do đó AMBC là hbh (1)

Mà AB là đtb tg NMI nên AB//NI

Mà tg MNI cân tại M nên MC là trung tuyến cx là đường cao

Do đó \(MC\perp NI\Rightarrow MC\perp AB\left(2\right)\)

Từ (1)(2) ta được AMBC là hình thoi

27 tháng 10 2021

cx là gì??

25 tháng 11 2016

a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác

xét tam giác MNI=tam giác MPI (cgc)

b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP

Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP

25 tháng 11 2016

a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC

XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ

MN=MP

NMI=PMI

MI CHUNG

=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)

b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP

MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP

a: Xét ΔMNK và ΔMPK có 

MN=MP

NK=PK

MK chung

Do đó: ΔMNK=ΔMPK

b: Ta có: ΔMNP cân tại M

mà MK là đường trung tuyến

nên MK là đường cao

8 tháng 9 2016

Bạn tự vẽ hình nha ==''

G là trung điểm của MN

H là trung điểm của MI

=> GH là đường trung bình của tam giác MNI

=> GH // NI

=> GHNI là hình thang

 GH là đường trung bình của tam giác MNI

=> GH = NI : 2 = 3 : 2 = 1,5 (cm)

E là trung điểm của NI

H là trung điểm của MI

=> EH là đường trung bình của tam giác MNI

=> EH // MN

=> MHEN là hình thang

mà M = 900

=> MHEN là hình thang vuông

Chúc bạn học tốt ^^

8 tháng 9 2016

a) Có: NG=MG(gt)

           MH=HI(gt)

=>GH là đường trung bình của ΔMNI

b)=>GH//NI

=>tứ giác GHIN là hình thang

c) Có: GH là đg trung bình

=>GH=1/2NI=1/2.3=3/2

d) Có: NE=EI(gt)

           MH=HI(gt)

=> HE là đg trung bình

=>HE//MN

=>MHEN là ht vuông