Cho tam giác MNI có MN = MI. Gọi K là trung điểm NI
Chứng minh : a) ∆ MNK = ∆ MIK
b) MK ⊥ NI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔMNK có NM=NK
nên ΔMNK cân tại N
Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)
nên ΔMNK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
Dễ thấy AB,AC là đường trung bình tam giác NMI
Do đó \(AC=\dfrac{1}{2}MI=MB\) (B là trung điểm MI) và AC//MI hay AC//MB
Do đó AMBC là hbh (1)
Mà AB là đtb tg NMI nên AB//NI
Mà tg MNI cân tại M nên MC là trung tuyến cx là đường cao
Do đó \(MC\perp NI\Rightarrow MC\perp AB\left(2\right)\)
Từ (1)(2) ta được AMBC là hình thoi
a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác
xét tam giác MNI=tam giác MPI (cgc)
b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP
Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP
a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC
XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ
MN=MP
NMI=PMI
MI CHUNG
=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)
b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP
MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP
a: Xét ΔMNK và ΔMPK có
MN=MP
NK=PK
MK chung
Do đó: ΔMNK=ΔMPK
b: Ta có: ΔMNP cân tại M
mà MK là đường trung tuyến
nên MK là đường cao
Bạn tự vẽ hình nha ==''
G là trung điểm của MN
H là trung điểm của MI
=> GH là đường trung bình của tam giác MNI
=> GH // NI
=> GHNI là hình thang
GH là đường trung bình của tam giác MNI
=> GH = NI : 2 = 3 : 2 = 1,5 (cm)
E là trung điểm của NI
H là trung điểm của MI
=> EH là đường trung bình của tam giác MNI
=> EH // MN
=> MHEN là hình thang
mà M = 900
=> MHEN là hình thang vuông
Chúc bạn học tốt ^^
a) Có: NG=MG(gt)
MH=HI(gt)
=>GH là đường trung bình của ΔMNI
b)=>GH//NI
=>tứ giác GHIN là hình thang
c) Có: GH là đg trung bình
=>GH=1/2NI=1/2.3=3/2
d) Có: NE=EI(gt)
MH=HI(gt)
=> HE là đg trung bình
=>HE//MN
=>MHEN là ht vuông
Bạn tự vẽ hình
Vì K là trung điểm của NI
=> IK = NK
Xét \(\Delta MNI\)ta có :
\(MN=MI\left(gt\right)\)
\(MK\)là cạnh chung
\(IK=NK\)
=> \(\Delta MNK=\Delta MIK\)
b, Vì \(\Delta MNK=\Delta MIK\) ta có :
\(\widehat{MKI}=\widehat{MKN}\)( 2 góc t/ư )
\(\Rightarrow\widehat{MKI}+\widehat{MKN}=180^0\)( t/c 2 góc kề bù )
\(\Rightarrow2\widehat{MKI}=2\widehat{MKN}=180^0\)
\(\Rightarrow\widehat{MKI}=\widehat{MKN}=90^0\)hay \(MK\perp NI\)