Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?
Xét tam giác MKN và tam giác PKH ta có
MK=KP ( K là trung điểm MP )
NK=KH ( K là trung điểm NH )
góc MKN = góc PKH ( doi dinh)
-> tam giac MKN = tam giac PKH (c-g-c)
b)
Xét tam giác MKH và tam giác PKN ta có
MK=KP ( K là trung điểm MP )
HK=KN( K là trung điểm NH )
góc MKH = góc PKN ( doi dinh)
-> tam giac MKH = tam giac PKH (c-g-c)
-> góc HMK = góc HPN
mà 2 goc o vi tri sole trong
nên MH// NP
c) ta có
góc MNK = góc KHP (tam giac MKN = tam giac PKH)
mà 2 goc o vi trí sole trong
nên NM // PH
mà NM vuông góc MP tại M ( tam giác MNP vuông tại M)
-> PH vuông góc MP
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔMNK có NM=NK
nên ΔMNK cân tại N
Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)
nên ΔMNK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác
xét tam giác MNI=tam giác MPI (cgc)
b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP
Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP
a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC
XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ
MN=MP
NMI=PMI
MI CHUNG
=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)
b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP
MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
a: Xét ΔMNK và ΔMPK có
MN=MP
NK=PK
MK chung
Do đó: ΔMNK=ΔMPK
b: Ta có: ΔMNP cân tại M
mà MK là đường trung tuyến
nên MK là đường cao