Biết I = ∫ 0 1 x 3 x + 1 + 2 x + 1 d x = a + b 3 9 , với a, b là các số thực. Tính tổng T = a+b
A. T = - 10
B. T = - 4
C. T = 15
D. T = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9 : Tìm x, biết :
a, (x - 2)(x - 3) + (x - 2) - 1 = 0
\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy x ={1; 3}
b, (x + 2)2 - 2x(2x + 3) = (x + 1)2
\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)
\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)
Bài 3: Tìm x, biết:
a) \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow4x=40\)
\(\Leftrightarrow x=10\)
Vậy x = 10
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow\left(2x+3\right)^2-4\left(x^2-1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3
c) \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=18\)
\(\Leftrightarrow2\left(1-2x\right)=18\)
\(\Leftrightarrow2-4x=18\)
\(\Leftrightarrow4x=-16\)
\(\Leftrightarrow x=-4\)
Vậy x =-4
d) \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\)
\(\Leftrightarrow12x=5\)
\(\Leftrightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
e) \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x=9\)
\(\Leftrightarrow25-6x=9\)
\(\Leftrightarrow6x=16\)
\(\Leftrightarrow x=\frac{8}{3}\)
Vậy \(x=\frac{8}{3}\)
f) \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)
\(\Leftrightarrow21-5x=0\)
\(\Leftrightarrow5x=21\)
\(\Leftrightarrow x=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)
b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)
\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)
c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)
\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)
\(\Rightarrow x=-2\)
d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)
\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{25}{9}\)
e) \(\dfrac{1}{2}x+650\%x-x=-6\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)
\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)
\(\Rightarrow6x=-6\)
\(\Rightarrow x=\dfrac{-6}{6}=-1\)
g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)
\(\Rightarrow2x-1-3+x=2-x\)
\(\Rightarrow3x-4=2-x\)
\(\Rightarrow3x+x=2+4\)
\(\Rightarrow4x=6\)
\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)
Đáp án D
Phương pháp giải: Nhân liên hợp với biểu thức mẫu số, đưa về tính tích phân cơ bản
Lời giải:
Ta có
I = ∫ 0 1 x 3 x + 1 + 2 x + 1 d x = ∫ 0 1 x 3 x + 1 + 2 x + 1 3 x + 1 2 − 2 x + 1 2 d x
∫ 0 1 x 3 x + 1 − 2 x + 1 3 x + 1 − 2 x − 1 = ∫ 0 1 3 x + 1 − 2 x + 1 d x .
= 1 3 . 3 x + 1 3 3 2 − 1 2 . 2 x + 1 3 3 2 1 0 = 2 9 . 3 x + 1 3 − 1 3 . 2 x + 1 3 1 0
= 1 9 2 3 x + 1 3 − 3 2 x + 1 3 1 0 = 1 9 16 − 9 3 + 1 = 17 − 9 3 9 ⇒ a = 17 b = − 9 .
Vậy T = a + b = 17 − 8 = 8.