Giá trị lớn nhất của biểu thức \(A=x^2y\) với x > 0, y > 0 biết \(2x+xy=4\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
BT
12 tháng 5 2017
Ta có:
2x+xy=4
=> xy=4-2x
A=x2y=x.(xy)
=> A=x(4-2x)=4x-2x2
=> A=2-2+4x-2x2 = 2-2(x2-2x+1)
=> A=2-2(x-1)2
Ta thấy: (x-1)2\(\ge\)0 với mọi x
=> A \(\le\)2 với mọi x
=> Giá trị lớn nhất của A là 2
Đạt được khi x-1=0 hay x=1 và y=2
C
31 tháng 10 2019
Ta có: \(2x+xy=4\)
\(\Leftrightarrow2x^2+x^2y=4x\)
\(\Leftrightarrow x^2y=4x-2x^2=-2\left(x^2-2x\right)\)
\(=-2\left(x^2-2x+1-1\right)\)
\(=-2\left[\left(x-1\right)^2-1\right]\)
\(=-2\left(x-1\right)^2+2\le2\)
Vậy \(A_{max}=2\Leftrightarrow x-1=0\Leftrightarrow x=1\)
cái này chỉ cần rút x hoặc y rồi thay vào A là ra mà an
đăng lên cho vui vợi hoy =)) dù sao cũng camon Tuấn Anh nha =))