Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức Cauchy \(\sqrt{ab}\le\dfrac{a+b}{2}\) viết lại dưới dạng \(ab\le\left(\dfrac{a+b}{2}\right)^2\) (*) (a, b ≥ 0)
Áp dụng bất dẳng thức Cauchy dưới dạng (*) với hai số dương 2x và xy ta được :
\(2x.xy\le\left(\dfrac{2x+xy}{2}\right)^2=4\)
Dấu “ = “ xảy ra khi : 2x = xy = 4 : 2 tức là khi x = 1, y = 2=> max A = 2 <=> x = 2, y = 2.
Ta có:
2x+xy=4
=> xy=4-2x
A=x2y=x.(xy)
=> A=x(4-2x)=4x-2x2
=> A=2-2+4x-2x2 = 2-2(x2-2x+1)
=> A=2-2(x-1)2
Ta thấy: (x-1)2\(\ge\)0 với mọi x
=> A \(\le\)2 với mọi x
=> Giá trị lớn nhất của A là 2
Đạt được khi x-1=0 hay x=1 và y=2
Ta có: \(2x+xy=4\)
\(\Leftrightarrow2x^2+x^2y=4x\)
\(\Leftrightarrow x^2y=4x-2x^2=-2\left(x^2-2x\right)\)
\(=-2\left(x^2-2x+1-1\right)\)
\(=-2\left[\left(x-1\right)^2-1\right]\)
\(=-2\left(x-1\right)^2+2\le2\)
Vậy \(A_{max}=2\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có :
\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)
A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...