Cho tam giác ABC có Góc B , C nhọn . Kẻ AH vuông góc BC biết :
AC = 15cm , HB = 5cm , HC = 9cm . Tính cạnh AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:
AH²+BH²=AB²
AH²=AB²−BH²
AH²=52−32
⇒AH²=16
⇒AH=4(cm)
Ta có:
BH+HC=BC
⇒HC=BC−BH
⇒HC=8−3
⇒HC=5(cm)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:
AH²+HC²=AC²
42+52=AC²
⇒AC²=41
⇒AC=√41(cm)
Vậy HC = 5 cm, AC = √41 cm
#Tuyên#
a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)
\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\)
b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:
\(AC^2=AH^2+HC^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)
\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)
△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=25-9=16(cm)
Vậy: CH=16cm
Áp dụng định lý Pi ta go vào tam giác AHB ,có:
\(AB=\sqrt{AH^2+HB^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)
Áp dụng định lý Pi ta go vào tam giác AHC ,có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
Chu vi tam giác ABC là:
\(13+20+5+16=54\left(cm\right)\)
Áp dụng định lý Pi ta go, ta có:
AH2 + HC2 = AC2
<=> AH2 = AC2 - HC2
<=> AH2 = 152 - 92
<=> AH2 = 144
Áp dụng định lý Pi ta go, ta có:
AB2 = AH2 + BH2
<=> AB2 = 144 + 52
<=> AB2 = 144 + 25
<=> AB2 = 169
=> \(AB=\sqrt{169}=13\)
=> AB = 13 cm
nha
Bạn tự vẽ hình nhé.
Xét tam giác AHC vuông tại H có: AC2 = AH2 + HC2 (Định lí Pitago)
=> 152 = AH2 + 92
=> AH2 = 144
Xét tam giác AHB vuông tại H có AB2 = AH2 + HB2 (Định lí Pitago)
=> AB2 = 144 + 52
=> AB2 = 169
=> AB = 13 (cm)