K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Đáp án C

Khối bát diện được tạo bởi 2 khối chóp tứ giác đều

Chiều cao của khối chóp là  h = a 2 − a 2 2 = a 2

Thể tích của khối chóp là:  V = 1 3 a 2 . a 2 = a 3 3 2

Thể tích khối bát diện đều là  V 1 = 2 V = 2. a 3 3 2 = 2 a 3 3

21 tháng 8 2023

Diện tích mặt đáy là:\(\dfrac{a^2.\sqrt{3}}{4}\)

Thể tích khối lăng trụ là: \(a.\dfrac{a^2.\sqrt{3}}{4}=\dfrac{a^3.\sqrt{3}}{4}\)

\(\Rightarrow A\)

15 tháng 8 2023

Thể tích:\(V=a^2.3a=3a^3\)

\(\Rightarrow B\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Diện tích đáy lớn là: \(S = \frac{{{{\left( {2{\rm{a}}} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Diện tích đáy bé là: \(S' = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích của bồn chứa là: \(V = \frac{1}{3}.\frac{{a\sqrt 6 }}{3}\left( {{a^2}\sqrt 3  + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}}  + \frac{{{a^2}\sqrt 3 }}{4}} \right) = \frac{{7\sqrt 2 }}{{12}}{a^3}\)

Chọn C.

2 tháng 5 2018

Chọn C

24 tháng 1 2022

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)

Chọn A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(M\) là trung điểm của \(BC\), \(O\) là trọng tâm tam giác \(ABC\).

\( \Rightarrow SO \bot \left( {ABC} \right)\)

Tam giác \(ABC\) đều

\( \Rightarrow AM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2} \Rightarrow AO = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)

Tam giác \(SAO\) vuông tại \(O \Rightarrow SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 6 }}{3}\)

\(\begin{array}{l}{S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\\{V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SO = \frac{{{a^3}\sqrt 2 }}{{12}}\end{array}\)

13 tháng 7 2019

7 tháng 2 2019

Đáp án D

TXĐ: D = 0 ; 2  ta có: y ' = 2 − 2 x 2 2 x − x 2 < 0 ⇔ x > 1

 Do đó hàm số nghịch biến trên  1 ; 2 .

NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)