K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

19 tháng 12 2017

Trong (SBC) qua G kẻ M N / / B C M ∈ S B ; N ∈ S C . Khi đó mặt phẳng đi qua AG và song song với BC chính là mặt phẳng (AMN). Mặt phẳng này chia khối chóp thành 2 khối S.AMN và AMNBC.

Gọi H là trung điểm của BC.

  M N / / B C

Theo định lí Ta-lét ta có:

 

Vậy

 

Chọn A.

19 tháng 6 2018

Đáp án A

Nối  chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.

Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE

Gọi S là diện tích

Họi h là chiều cao của tứ diện ABCD

 Khi đó 

Suy ra

 

24 tháng 2 2017

Chọn đáp án A.

21 tháng 6 2018

12 tháng 10 2019

Đáp án D.

Phương pháp : Dựng thiết diện, xác định hai phần cần tính thể tích.

Sử dụng phân chia và lắp ghép các khối đa diện.

Cách giải : Gọi E = MN ∩ B'C' 

Kéo dài MP cắt AB tại D, cắt AA ‘ tại F.

Nối NF, cắt AC tại G.

Do đó thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) là NEPDG.

Gọi V1 là thể tích khối đa diện chứa đỉnh A’ ta có :

Ta có: 

 

=> D là trung điểm của AB

Dễ dàng chứng minh được ∆ADG  đồng dạng ∆A’MN theo tỉ số  1 3

Áp dụng định lí Menelaus trong tam giác A’B’C’ ta có:

Áp dụng định lí Menelaus trong tam giác A’MN ta có:

 

Vậy 

=>  V 1 V 2 = 49 95

3 tháng 8 2017

Chọn đáp án C.

10 tháng 2 2018

Đáp án C

Ta có:  2 O D 2 = a 2 ⇒ O D = a 2

⇒ S O = O D tan 60 ∘ = a 2 . 3 = a 3 2

Gọi H là hình chiếu của N lên (ABCD) là trung điểm của OC.

Ta có: N H = S O 2 = a 6 4 ; S M B C = S A B C D = a 2  

V N . B C M = 1 3 N H . S M B C = 1 3 . a 6 4 . a 2 = a 3 6 12  

Ta có:

M D D C . C S C N . N P P M = 1 ⇔ 1.2. N P P M = 1 ⇔ N P P M = 1 2 ⇒ P M M N = 2 3  

Ta có: V M . D P Q V M . B C N = P M M N . M D M C . M Q M B = 2 3 . 1 2 . 1 2 = 1 6

⇒ V N p Q D C A = 5 6 V N . B C M = 5 6 . a 3 6 12 = 5 a 3 6 72

30 tháng 1 2018

Chọn đáp án D

Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD: 

FOR REVIEW

Tam giác cân có một góc bằng 60 °  thì là tam giác đều.