K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2023

\(B=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{x-1}\left(dkxd:x\ne1,x\ge0\right)\)

\(=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\left(dpcm\right)\)

\(B=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{x-1}=\dfrac{2x-2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

4 tháng 7 2021

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)

a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)

\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)

 

 

11 tháng 7 2021

undefined

Ta có: \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x-3-2x+8-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

Ta có: \(A-1=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-1\)

\(=\dfrac{\sqrt{x}+2-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}+1}>0\forall x\) thỏa mãn ĐKXĐ

hay A>1

10 tháng 10 2019

a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)

\(=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6+\sqrt{3}-3+6-\sqrt{3}-3}{9-3}=\frac{6}{6}=1\)

b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2}{\sqrt{x}}\)

22 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)

\(A=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)

\(=\dfrac{x-1}{x-\sqrt{x}}\cdot\left(\sqrt{x}+1\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

Khi \(x=\left(\sqrt{3}-1\right)^2\) thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\left(\sqrt{3}+1\right)}{2}=\dfrac{3\sqrt{3}+3}{2}\)

c: \(P-2=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-2\)

\(=\dfrac{x+2\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}>0\)

=>P>2

a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)

b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)

Để P lớn nhất thì căn x-2=1

=>căn x=3

=>x=9

23 tháng 5 2022

@Doraemon2611.

 

23 tháng 5 2022

:))

11 tháng 7 2023

\(A+B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\left(\text{đ}pcm\right)\)

A+B

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)

\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)