Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\sqrt{2x}=a; \sqrt{2y}=b$ thì $0\leq a,b\leq 1$
Bài toán trở thành:
CMR:
$\frac{a}{b^2+2}+\frac{b}{a^2+2}\leq \frac{2}{3}$
$\Leftrightarrow 3(a^3+b^3)+6(a+b)\leq 2a^2b^2+4(a^2+b^2)+8(I)$
--------------------------
Thật vậy:
$a^3+b^3=(a+b)(a^2-ab+b^2)\leq 2(a^2-ab+b^2)$
$\Rightarrow 3(a^3+b^3)\leq 6(a^2-ab+b^2)(1)$
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
$\Rightarrow 6(a+b)\leq 6(ab+1)(2)$
Từ $(1);(2)\Rightarrow 3(a^3+b^3)+6(a+b)\leq 6(a^2+b^2+1)(*)$
Mà:
$6(a^2+b^2+1)-[2a^2b^2+4(a^2+b^2)+8]$
$=2(a^2+b^2-a^2b^2-1)=2(a^2-1)(1-b^2)\leq 0$
$\Rightarrow 6(a^2+b^2+1)\leq 2a^2b^2+4(a^2+b^2)+8(**)$
Từ $(*);(**)$ suy ra $(I)$ đúng. Ta có đpcm.
Dấu "=" xảy ra khi $a=b=1$
đk: x \(\ge\)0
A = \(\left(4\sqrt{x}-3\right)^2-\left(2\sqrt{x}+1\right)\left(8\sqrt{x}-3\right)+13\left(2\sqrt{x}-1\right)\)
A = \(16x-24\sqrt{x}+9-16x-2\sqrt{x}+3+26\sqrt{x}-1\)
A = 11
=> giá trị A ko phụ thuộc vào giá trị biến x
Sử dụng BĐT AM-GM, ta có:
\(x^3+y^2\ge2yx\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)
Tương tự cộng lại suy ra:
\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384
Pt tương đương:
\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)
Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)
Đồng thời:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
Rồi cộng lại
Xét \(x< -\frac{1}{2}\)
\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\right)\sqrt{x^2+x+1}\)
\(\Leftrightarrow\left(-2x-1\right)\sqrt{x^2-x+1}< \left(-2x+1\right)\sqrt{x^2+x+1}\)
\(\Leftrightarrow\left(4x^2+4x+1\right)\left(x^2-x+1\right)< \left(4x^2-4x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow6x< 0\)đúng
Xét \(-\frac{1}{2}\le x< \frac{1}{2}\)
Thì VT dương VP âm nên đúng
Xét \(x\ge\frac{1}{2}\)làm tương tự như TH 1
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)