K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

\(\Rightarrow2sin\left(\frac{\pi}{4}+2x\right)=\frac{3}{2}\) \(\Rightarrow sin\left(\frac{\pi}{4}+2x\right)=\frac{3}{4}\)

\(\Rightarrow sin\frac{\pi}{4}+sin2x=\frac{3}{4}\)   \(\Rightarrow sin2x=\frac{3}{4}-sin\left(\frac{\pi}{4}\right)=0,74\)

\(\Rightarrow2x=48\Rightarrow x=\frac{48}{2}=24\)

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

NV
21 tháng 1 2021

\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)

\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)

\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)

\(\Leftrightarrow...\)

21 tháng 1 2021

Em cảm ơn ạ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     \(\sin \left( {2x - \frac{\pi }{3}} \right) =  - \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{3} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{5\pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{5\pi }}{6} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy phương trình có nghiệm là: \(x \in \left\{ {k\pi ;\frac{{5\pi }}{6} + k\pi } \right\}\)

b)     \(\sin \left( {3x + \frac{\pi }{4}} \right) =  - \frac{1}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{4} =  - \frac{\pi }{6} + k2\pi \\3x + \frac{\pi }{4} = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{{5\pi }}{{12}} + k2\pi \\3x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{{5\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{11\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c)     \(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} =  - \frac{\pi }{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} =  - \frac{\pi }{{12}} + k2\pi \\\frac{x}{2} =  - \frac{{5\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{6} + k4\pi \\x =  - \frac{{5\pi }}{6} + k4\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

d)     \(2\cos 3x + 5 = 3\)

\(\begin{array}{l} \Leftrightarrow \cos 3x =  - 1\\ \Leftrightarrow \left[ \begin{array}{l}3x = \pi  + k2\pi \\3x =  - \pi  + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = \frac{{ - \pi }}{3} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

NV
22 tháng 10 2020

1.

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\)\(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)

2.

\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)

\(\Leftrightarrow2cos^22x-cos2x=cos2x\)

\(\Leftrightarrow cos^22x-cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

NV
22 tháng 10 2020

3.

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow...\)

4.

\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)

\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)

\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)

\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)

\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)

5 tháng 6 2016

2(sin2xcos\(\frac{9\pi}{4}\) + sin\(\frac{9\pi}{4}\)cosx) + 7\(\sqrt{2}\)sinx + \(\sqrt{2}\)( sinx cos\(\frac{11\pi}{2}\)+sin\(\frac{11\pi}{2}\)cosx ) =4\(\sqrt{2}\)

\(\sqrt{2}\)sin2x + \(\sqrt{2}\)cosx +7\(\sqrt{2}\)sinx -\(\sqrt{2}\)cosx =4\(\sqrt{2}\)

2\(\sqrt{2}\)sinxcosx+7\(\sqrt{2}\)sinx - 4\(\sqrt{2}\) =0

PHẦN CÒN LẠI C TỰ LM NỐT NHÉ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      

\(\begin{array}{l}\sin \left( {2x - \frac{\pi }{6}} \right) =  - \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{6} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x =  - \frac{\pi }{6} + k2\pi \\2x = \frac{{3\pi }}{2} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{12}} + k\pi \\x = \frac{{3\pi }}{4} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

b)     \(\begin{array}{l}\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \cos \frac{\pi }{3}\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{{3x}}{2} + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\\frac{{3x}}{2} + \frac{\pi }{4} = \frac{{ - \pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{18}} + \frac{{k4\pi }}{3}\\x = \frac{{ - 7\pi }}{{18}} + \frac{{k4\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

c)       

\(\begin{array}{l}\sin 3x - \cos 5x = 0\\ \Leftrightarrow \sin 3x = \cos 5x\\ \Leftrightarrow \cos 5x = \cos \left( {\frac{\pi }{2} - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} - 3x + k2\pi \\5x =  - \left( {\frac{\pi }{2} - 3x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}8x = \frac{\pi }{2} + k2\pi \\2x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x =  - \frac{\pi }{4} + k\pi \end{array} \right.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

d)      

\(\begin{array}{l}{\cos ^2}x = \frac{1}{4}\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\cos x =  - \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \cos \frac{\pi }{3}\\\cos x = \cos \frac{{2\pi }}{3}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\\\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\end{array} \right.\end{array}\)

e)      

\(\begin{array}{l}\sin x - \sqrt 3 \cos x = 0\\ \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{3}.\sin x - \sin \frac{\pi }{3}.\cos x = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = \sin 0\\ \Leftrightarrow x - \frac{\pi }{3} = k\pi ;k \in Z\\ \Leftrightarrow x = \frac{\pi }{3} + k\pi ;k \in Z\end{array}\)

f)       

\(\begin{array}{l}\sin x + \cos x = 0\\ \Leftrightarrow \frac{{\sqrt 2 }}{2}\sin x + \frac{{\sqrt 2 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{4}.\sin x + \sin \frac{\pi }{4}.\cos x = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 0\\ \Leftrightarrow x + \frac{\pi }{4} = k\pi ;k \in Z\\ \Leftrightarrow x =  - \frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\cos \left( {3x - \frac{\pi }{4}} \right) =  - \frac{{\sqrt 2 }}{2}\;\;\;\; \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x - \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi }\\{3x - \frac{\pi }{4} =  - \frac{{3\pi }}{4} + k2\pi }\end{array}} \right.\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = \pi  + k2\pi }\\{3x =  - \frac{\pi }{2} + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + \frac{{k2\pi }}{3}}\\{x =  - \frac{\pi }{6} + \frac{{k2\pi }}{3}}\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)

b) \(2{\sin ^2}x - 1 + \cos 3x = 0\;\;\;\;\; \Leftrightarrow \cos 2x + \cos 3x = 0\;\; \Leftrightarrow 2\cos \frac{{5x}}{2}\cos \frac{x}{2} = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos \frac{{5x}}{2} = 0}\\{\cos \frac{x}{2} = 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{{5x}}{2} = \frac{\pi }{2} + k\pi }\\{\frac{{5x}}{2} =  - \frac{\pi }{2} + k\pi }\\{\frac{x}{2} = \frac{\pi }{2} + k\pi }\\{\frac{x}{2} =  - \frac{\pi }{2} + k\pi }\end{array}} \right.\;\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x =  - \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x = \pi  + k2\pi }\\{x =  - \pi  + k2\pi }\end{array}} \right.\;\;\;\left( {k \in \mathbb{Z}} \right)\)

c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\;\; \Leftrightarrow 2x + \frac{\pi }{5} = x - \frac{\pi }{6} + k\pi \;\;\; \Leftrightarrow x =  - \frac{{11\pi }}{{30}} + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\)