Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\\ \)(1)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0\Rightarrow!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\left\{\begin{matrix}2x+1=0\\-x^2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-\frac{1}{2}\\x=0\end{matrix}\right.\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2\left(x+\frac{1}{2}\right)\left(x^2+1\right)\right]\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)}=\left(x+\frac{1}{2}\right)\left(x^2+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}+1\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-1-x^2+1\right)=0\)
\(\Leftrightarrow-x^2\left(x+\frac{1}{2}\right)=0\)\(\Leftrightarrow\left[\begin{matrix}-x^2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
5,\(cos^2\frac{\pi}{24}\left(1-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}\left(sin^2\frac{\pi}{24}+cos^2\frac{\pi}{24}-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}.sin^2\frac{\pi}{24}\)
\(\Rightarrow2sin\left(\frac{\pi}{4}+2x\right)=\frac{3}{2}\) \(\Rightarrow sin\left(\frac{\pi}{4}+2x\right)=\frac{3}{4}\)
\(\Rightarrow sin\frac{\pi}{4}+sin2x=\frac{3}{4}\) \(\Rightarrow sin2x=\frac{3}{4}-sin\left(\frac{\pi}{4}\right)=0,74\)
\(\Rightarrow2x=48\Rightarrow x=\frac{48}{2}=24\)