Cho x,y là các số thực dương thỏa mãn 9 l n 2 x + 2 l n 2 y = 12 l n x . l n y . Đẳng thức nào sau đây là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: 9 ln 2 x + 4 ln 2 y = 12 ln x . ln y
⇔ 3 ln x 2 - 12 ln x . ln y + 2 ln y 2 = 0 ⇔ 3 ln x - 2 ln y 2 = 0
⇔ 3 ln x = 2 ln y ⇔ ln x 3 = ln y 2 ⇔ x 3 = y 2 .
Cho x,y,z,t là các số thực dương thỏa mãn đẳng thức:\(x^2+z^2=y^2+t^2\)
Chứng minh x+y+z+t là hợp số
Lời giải:
Phản chứng. Giả sử $x+y+z+t$ là số nguyên tố. Vì $x,y,z,t$ nguyên dương nên $x+y+z+t\geq 4$. Do đó nó là snt lẻ.
$\Rightarrow x+z$ và $y+t$ phải khác tính chẵn lẻ.
Không mất tính tổng quát, giả sử $x+z$ chẵn và $y+t$ lẻ. Khi đó:
$x^2+z^2=(x+z)^2-2xz$ chẵn
$y^2+t^2=(y+t)^2-2yt$ lẻ
Do đó $x^2+z^2$ không thể bằng $y^2+t^2$ (trái với giả thiết)
Vậy $x+y+z+t$ là hợp số.
hmm...
\(x^2+z^2=y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2+t^2=2\left(y^2+z^2\right)\)
Do đó \(x^2+y^2+z^2+t^2⋮2\) (1)
Lại có: \(x^2-x⋮2;y^2-y⋮2;z^2-z⋮2;t^2-t⋮2\)
\(\Rightarrow x^2-x+y^2-y+z^2-z+t^2-t⋮2\)
Hay \(\left(x^2+y^2+z^2+t^2\right)-\left(x+y+z+t\right)⋮2\) (2)
Từ (1) và (2) suy ra \(x+y+z+t⋮2\)
Mà \(x,y,z,t\) đều là các số dương nên \(x+y+z+t>2\) => \(x+y+z+t\) là hợp số.
Đáp án D
Các đáp án A, B, C đều đúng, chỉ có D là sai.
Chọn phương án D.
Cho x,y là hai số thực dương thỏa mãn x + y 《1. Tìm giá trị nhỏ nhất của biểu thức Q=x^2+1/x+y^2+1/y
\(Q=x^2+\frac{1}{8x}+\frac{1}{8x}+y^2+\frac{1}{8y}+\frac{1}{8y}+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(Q\ge3\sqrt[3]{\frac{x^2}{8x.8x}}+3\sqrt[3]{\frac{y^2}{8y.8y}}+\frac{3}{4}.\frac{4}{x+y}\)
\(Q\ge\frac{3}{4}+\frac{3}{4}+\frac{3}{x+y}\ge\frac{3}{2}+\frac{3}{1}=\frac{9}{2}\)
\(Q_{min}=\frac{9}{2}\) khi \(x=y=\frac{1}{2}\)