K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019
28 tháng 11 2019

Chọn B

10 tháng 8 2017

a: AB\(\perp\)DA

AB\(\perp\)CD

b; CD\(\perp\)BC

CD\(\perp\)AD

c: BC\(\perp\)SA

AD\(\perp\)SA

4 tháng 2 2019

Chọn C

Chuẩn hóa và chọn hệ trục tọa độ sao cho

9 tháng 7 2019

Xác định được 

Tính được 

Suy ra tam giác SBD vuông tại S. Vậy các đỉnh S, A, C cùng nhìn xuống BD dưới một góc vuông nên 

Chọn B.

26 tháng 7 2018

7 tháng 10 2018

12 tháng 9 2019

Đáp án C

NV
3 tháng 3 2022

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)

b.

Gọi E là giao điểm AC và DI

I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)

\(\Rightarrow AICD\) là hình bình hành

Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật

\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông

 \(\Rightarrow AC\perp DI\) tại E

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)

Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)

\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)

3 tháng 3 2022

https://hoc24.vn/cau-hoi/.5005119341955 tương trợ em với thầy :((