K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

\(a,AB=\cos B\cdot BC=6\left(cm\right)\\ AC=\sqrt{BC^2-AB^2}=6\sqrt{3}\left(cm\right)\\ b,\text{Áp dụng HTL: }AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{3}\left(cm\right)\)

29 tháng 9 2018

tự làm đi cu, dễ vl ra

13 tháng 6 2021

A B C H 12

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)

\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)

\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)

\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm

\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)

Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2

13 tháng 6 2021

A B C H D 15 20

b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Lại có : \(BC=BD+DC=15+20=35\)cm 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)

\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm 

\(\Rightarrow AB=\frac{3}{4}.28=21\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm 

\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm 

20 tháng 11 2021

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

21 tháng 10 2018

A B C H D

ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)

... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)

\(\Rightarrow AB=9cm\)

b, gọi BD là x .Áp dụng tc đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)

\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)

Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)

.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

\(\Rightarrow BH=5,4cm\)

do AB<AC nên H nằm giữa B và D

\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)

... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)

\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)

Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!

Mấy cái chỗ .... thì bạn tự điền thêm vào nha!

k cho mk là được rồi! mk ko cần thẻ! cám ơn!

21 tháng 10 2018

A B C H D

ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)

... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)

\(\Rightarrow AB=9cm\)

b, gọi BD là x .Áp dụng tc đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)

\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)

Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)

.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

\(\Rightarrow BH=5,4cm\)

do AB<AC nên H nằm giữa B và D

\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)

... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)

\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)

Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!

Lần  2 nó lại bảo phải kiểm duyệt trước khi hiển thị! Ức chế hết sức!!! chương trình này có lẽ lỗi nặng?

Mấy cái chỗ .... thì bạn tự điền thêm vào nha!

k cho mk là được rồi! mk ko cần thẻ! cám ơn!

2 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có:  A B 2   +   A C 2   =   6 2   +   4 , 5 2   =   7 , 5 2   =   B C 2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

= >   ∠ B   =   37 ° = >   ∠ C   =   90 °   -   ∠ B   =   90 °   -   37 °   =   53 °

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

15 tháng 8 2023

loading...

a, Xét \(\Delta\)ABC có: AB2 + AC2 = 62 + 4,52 = 56,25  (cm2)

                        BC2 = 7,52 = 56,25  (cm2)

AB2 + AC2 = BCvậy tam giác ABC vuông tại A (đpcm) 

SinC = 6 : 7,5  =0,8 ⇒ \(\widehat{C}\) = 53,130 ⇒ \(\widehat{B}\) = 900 - 53,130 = 36,870

b, Dựng hình chữ nhật ABCD, chiều cao AH, DK, và đường thẳng d đi qua D song song với BC  như hình vẽ ta có

SABC = SBDC ⇒ AH = DK 

Lây 1 điểm bất M kỳ di động trên đường thẳng d ta có:

SBDC = SMBC  (vì hai tam giác có chiều cao bằng nhau và chung cạnh đáy BC)

⇒ SABC = SMBC

Kết luận khi M di động trên đường thẳng d thì diện tích tam giác MBC luôn bằng diện tích tam giác ABC

 

 

 

 

 

 

 

 

 

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

a: BC=15cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

13 tháng 5 2023

a.

Vì  ΔABC vuông tại A nên theo định lí Py - ta - go:

 BC2 = AB2 + AC2

 BC2 = 92 + 122

\(\Rightarrow\) BC2 = 225

\(\Rightarrow\) BC2 = \(\sqrt{225}\) = 15 cm

b. Xét  ΔABC và  Δ HBA:

      \(\widehat{A}=\widehat{H}\) = 900 (gt)

       \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\)  Δ HBA (g.g)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=7,2cm

c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)