K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

a)  B A H ^ + M A C ^  vì cùng phụ với  A B C ^

b) A 1 ^ = C 1 ^ (1) (chứng minh a)

DABC vuông có AM là trung tuyến nên DAMC cân tại M C 1 ^ = A 4 ^ (2).

Từ (1) và (2) suy ra A 1 ^ = A 4 ^ (3)

D thuộc đường trung trực của BC.

Þ DM ^ BC = {M}

Þ  D 1 ^ = A 2 ^

Vì DM = MA (giả thiết) ⇒   M 1 ^ =   A 3 ^   ⇒   A 2 ^ = A 3 ^    (4)

Từ (3) và (4) Þ AD là phân giác chung của  M A H ^   & C A B ^

c) Theo cách vẽ và kết quả câu b), ta có AEDF là hình vuông.

d) DDBE = DDCF  (cạnh huyền - cạnh góc vuông)

16 tháng 12 2021

a: Xét tứ giác ABHD có 

AB//HD

AB=HD

DO đó: ABHD là hình bình hành

20 tháng 11 2016

các đường thẳng qua F song song với BN và qua B song song với CP cắt nhau tại D 
a) CM : Tứ giác BDCP là hình bình hành 
b) CM : Tứ giác PNCD là hình thang 
c) CM : AM // ND và AM = ND

16 tháng 10 2021

a: Xét tứ giác AIHK có 

HK//AI

HI//AK

Do đó: AIHK là hình bình hành

mà \(\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

a: Xét tứ giác ANDM có

\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)

Do đó: ANDM là hình chữ nhật

11 tháng 12 2020

Xét Δcân ABC có:

AM là đg trung tuyến(GT)

➝M là trung điểm của BC (T/c dg trung tuyến)

Vì k đ/x với A qua M(GT)

➝M là trung điểm của AK (T/c đ/x điểm)

Xét tứ giác ABKC có:

M là trung điểm của AK(CMT)

M là trung điểm của BC(CMT)

➩ABKC là hình bình hành (tứ giác có 2 đg chéo đi qua 1 điểm là HBH)

mà AB=AC(△ABC cân tại A)

⇒ABKC là hình thoi (HBH có 2 cạnh= nhau là h.thoi)

⇒AK là phân giác của ∠BAC;KA là phân giác của ∠BKC;∠BAC=∠BKC(T/c h.thoi)

→∠BAK=∠AKC=∠KAC=∠BKA=\(\dfrac{1}{2}\) ∠BAC=\(\dfrac{1}{2}\)∠BKC

Xét ΔACK có:

∠AKC=∠KAC(CMT)

➞△ACK cân tại C(△ có 2 cạnh = nhau là △cân)

Vì ∠ACD là góc ngoài tại đỉnh C của △ACK 

➜∠KAC+∠AKC=∠ACD

mà ∠AKC=∠BAK (CMT)

➞∠BAK+∠KAC=∠BAC=∠ACD

mà ∠BAC và ∠ACD là 2 góc so le trong của AB và CD

➞AB song song với CD (tại ko có kí hiệu nên mk viết tạm nha Tuấn)

mà AD song song với BC (GT)

➜ABCD là HBH (tứ giác có 2 cặp cạnh song song là HBH)

ta cần thêm vào △ABC là ∠BAC vuông

⇒ta có △ABC vuông cân tại A để ABKC là h.vuông