K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

Xét Δcân ABC có:

AM là đg trung tuyến(GT)

➝M là trung điểm của BC (T/c dg trung tuyến)

Vì k đ/x với A qua M(GT)

➝M là trung điểm của AK (T/c đ/x điểm)

Xét tứ giác ABKC có:

M là trung điểm của AK(CMT)

M là trung điểm của BC(CMT)

➩ABKC là hình bình hành (tứ giác có 2 đg chéo đi qua 1 điểm là HBH)

mà AB=AC(△ABC cân tại A)

⇒ABKC là hình thoi (HBH có 2 cạnh= nhau là h.thoi)

⇒AK là phân giác của ∠BAC;KA là phân giác của ∠BKC;∠BAC=∠BKC(T/c h.thoi)

→∠BAK=∠AKC=∠KAC=∠BKA=\(\dfrac{1}{2}\) ∠BAC=\(\dfrac{1}{2}\)∠BKC

Xét ΔACK có:

∠AKC=∠KAC(CMT)

➞△ACK cân tại C(△ có 2 cạnh = nhau là △cân)

Vì ∠ACD là góc ngoài tại đỉnh C của △ACK 

➜∠KAC+∠AKC=∠ACD

mà ∠AKC=∠BAK (CMT)

➞∠BAK+∠KAC=∠BAC=∠ACD

mà ∠BAC và ∠ACD là 2 góc so le trong của AB và CD

➞AB song song với CD (tại ko có kí hiệu nên mk viết tạm nha Tuấn)

mà AD song song với BC (GT)

➜ABCD là HBH (tứ giác có 2 cặp cạnh song song là HBH)

ta cần thêm vào △ABC là ∠BAC vuông

⇒ta có △ABC vuông cân tại A để ABKC là h.vuông

 

 

 

21 tháng 3 2020

A B C D M K

a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )

=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)

Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực  hay KM là đường trung trực => KB = KC(2)

\(\Delta\)ABC cân => AB = AC (3)

Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi

b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC 

=> ABCD là hình bình hành 

c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM  => ^DAK = ^DAM = 90 độ 

Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm 

\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm 

=> AK = 2AM = 2.4 = 8cm

AD = BC = 6cm ( ABCD là hình bình hành )

=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2) 

d) Để ABKC kaf hình vuông; mà ABKC là hình thoi  nên ^BAC = 90 độ 

=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.

3 tháng 12 2019

A B C M K D

a) Do t/giác ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AM \(\perp\)BC hay AK \(\perp\)BC

Xét tứ giác ABKC

có AM = MK (gt) ; BM = CM (gt)

 AK \(\perp\)BC (cmt)

=> ABKC là hình thoi

b) Do ABKC là hình thoi => AB // CK hay AB // CD (vì K, C,D thẳng hàng)

Xét tứ giác ABCD có AB // CD (cmt) AD // BC (gt)

=> ABCD là hình bình hành

c) Ta có: BC // AD (gt)

   AM \(\perp\)BC (cm câu a)

=> AM \(\perp\)AD \(\equiv\)A

=> \(\widehat{KAD}=90^0\)

Ta có: BM = MC = 1/2BC = 1/2.6 = 3 cm

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

 AB2 = AM2 + BM2

=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16

=> AM = 4 (cm)

Ta lại có: AM + MK = AK => AK = 2AM (do AM = MK)

=> AK = 2.4 = 8 (cm)

Do ABCD là hình bình hành => BC = AD = 6 cm

Diện tích t/giác DAK là: SDAK  = 6.8/2 = 24 (cm2)

21 tháng 12 2021

a: Xét tứ giác ABKC có

M là trung điểm của BC

M là trung điểm của AK

Do đó: ABKC là hình bình hành

mà AB=AC

nên ABKC là hình thoi

21 tháng 12 2021

a: Xét tứ giác ABKC có

M là trung điểm của BC

M là trung điểm của AK

Do đó: ABKC là hình bình hành

mà AB=AC

nên ABKC là hình thoi

21 tháng 12 2021

câu c,d đâu bạn

 

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hình bình hành

Hình bình hành ABKC có AB=AC

nên ABKC là hình thoi

b: Hình thoi ABKC trở thành hình vuông khi \(\widehat{BAC}=90^0\)

c: Ta có:ABKC là hình thoi

=>AB//KC

mà C\(\in\)KD

nên AB//CD

Xét tứ giác ABCD có

AD//BC

AB//CD

Do đó: ABCD là hình bình hành

=>AD=BC

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

AB=AC
Do đó: ABKC là hình thoi

b: Để ABKC là hình vuông thì góc BAC=90 độ

c: Xét tứ giác ABCD có

AB//CD

AD//BC

=>ABCD là hình bình hành

=>AD=BC

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!