Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
b) Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).
Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân
c) Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.
d) Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID
a) AMN^=A1^=C^=A2^.
Ta lại có AMN^+ANM^=900
nên A2^+ANM^=900
Vậy OA⊥MN.
b) Dễ thấy BMNC là tứ giác nội tiếp. EI là đường tru...
chỉ biết thế
a) Do A thuộc đường tròn (O) nên \(\widehat{BAC}=90^o\)
Xét tứ giác AEHF có 3 góc vuông nên nó là hình chữ nhật.
Do AEHF là hình chữ nhật nên \(\widehat{AEF}=\widehat{EAH}\)
Do BA = OB nên \(\widehat{OBA}=\widehat{OAB}\)
Mà \(\widehat{EAH}+\widehat{OBA}=90^o\Rightarrow\widehat{AEF}+\widehat{BAO}=90^o\)
Gọi giao điểm của OA và EF là J. Xét tam giác EAJ có \(\widehat{EAJ}+\widehat{AEJ}=90^o\Rightarrow\widehat{AJE}=90^o\Rightarrow OA\perp EF.\)
b) Ta có bán kính OA vuông góc với dây cung PQ tại J nên J là trung điểm của PQ. Vậy thì AP = AQ hay cung AP bằng cung AQ.
Từ đó ta suy ra \(\widehat{PBA}=\widehat{EPA}\) (Góc nội tiếp chắn hai cung bằng nhau)
Vậy thì \(\Delta PBA\sim\Delta EPA\left(g-g\right)\Rightarrow\frac{AP}{AE}=\frac{AB}{AP}\Rightarrow AP^2=AE.AB\)
Xét tam giác vuông ABH có HE là đường cao. Sử dụng hệ thức lượng ta có: \(AH^2=AE.AB\)
Vậy nên AP = AH hay tam giác APH cân tại A.
c) Ta có DE.DF = DC.DB mà DC.DB = DK.DA nên DE.DF = DC.DB
Từ đó ta có \(\Delta DFK=\Delta DAE\left(c-g-c\right)\Rightarrow\widehat{DKF}=\widehat{DEA}\)
Vậy tứ giác AEFK là tứ giác nội tiếp.
d) Ta thấy \(\widehat{ICF}=\widehat{AHF}=\widehat{AEF}\)
Mà do AEFK là tứ giác nội tiếp nên \(\widehat{AEF}=\widehat{FKD}\) (Góc ngoài tại đỉnh đối)
Vậy ta có \(\widehat{AEF}=\widehat{FKD}\)
Suy ra \(\Delta ICF\sim\Delta IKD\left(g-g\right)\Rightarrow\frac{IC}{IK}=\frac{IF}{ID}\Rightarrow IC.ID=IK.IF\)
Ta cũng có \(\Delta IHF\sim\Delta IKH\left(g-g\right)\Rightarrow\frac{IH}{IK}=\frac{IF}{IH}\Rightarrow IH^2=IK.IF\)
Vậy nên \(IH^2=IC.ID\)