K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

4 tháng 4 2017

Đáp án A

Ta có: hình lập phương ABCD.A'B'C'D' có đường chéo bằng  a 3

Suy ra cạnh của hình lập phương bằng a.

Vậy  V A ' . A B C D = 1 3 h B = 1 3 a . a 2 = a 3 3

31 tháng 1 2017

15 tháng 6 2019

Chọn B.

Hình nón A.A'BCD' với đáy là hình chữ nhật A'BCD' có diện tích S = A'B.BC =  a 2 √2 và chiều cao h = (a 2 )/2 nên có thể tích V =  a 3 /3

7 tháng 8 2018

17 tháng 6 2017

NV
31 tháng 8 2021

\(AC=AB\sqrt{2}=4a\)

Áp dụng định lý Pitago:

\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)

\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)

Chọn A

19 tháng 6 2019

23 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Điểm A cách đều ba đỉnh của tam giác đều A'BD vì ta có AB = AD = AA′ = a, điểm C' cũng cách đều ba đỉnh của tam giác đều đó vì ta có:

C′B = C′D = C′A′ = a√2

Vậy AC' là trục của đường tròn ngoại tiếp tam giác A'BD, tức là đường thẳng AC' vuông góc với mặt phẳng (A'BD) tại trọng tâm I của tam giác A'BD. Ta cần tìm khoảng cách A'I.

Ta có A′I = BI = DI = 2A′O/3 với O là tâm của hình vuông ABCD

Ta lại có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự điểm C' cách đều ba đỉnh của tam giác đều CB'D', tính được khoảng cách từ C, B', D' tới đường chéo AC'.