K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

9 tháng 2 2018

Ta có

Do đó hàm số f(x) đồng biến trên R. Với một hàm số f(x) đồng biến trên R ta có tính chất sau:

 Thật vậy

+) Nếu

 (vô lí);

+) Nếu

 (vô lí).

+) Nếu

 (thỏa mãn)/

Từ ba khả năng trên ta có điều phải chứng minh. Áp dụng tính chất này ta có:

Phương trình đã cho có ba nghiệm thực phân biệt khi và chỉ khi (*) có ba nghiệm thực phân biệt

Có tất cả 20 số nguyên thỏa mãn.

Chọn đáp án A.

6 tháng 8 2019

Đáp án B

 

23 tháng 8 2018

Đáp án C

Điều kiện: nu6nQVCEZTkQ.pngrUqzkE1aohjQ.pngShNT0LFwSY9U.png.

Xét hàm số isOA9CQKtGmD.pngnsNKSq4LaXMu.png; KYR4NxNMc0mo.png.

Chia ASugHEp0JJnr.png cho E5ZQ70J4hydi.png ta được: 

2tpM5OncpLPt.png

Lhrpq1nABp8r.png

 kKQnwDa9j1EL.png

Bảng biến thiên và đồ thị:

Đặt nVFTCmmaFcsm.png.

Phương trình PA7QXsY0evPi.png.

cfEJHIjcgCJT.png

wcvkCRIk91y8.png

qPDPqBHPwyPb.png

Với NG18aCmi4ZOI.png, từ đồ thị ta thấy phương trình này chỉ cho 1 nghiệm.

Với CoAM9VdPHdHq.png, từ đồ thị ta thấy phương trình này cho 3 nghiệm.

Với KeK235WTBnKG.png, từ đồ thị ta thấy phương trình này chỉ cho 1 nghiệm.

 

Vậy phương trình đã cho có 5 nghiệm phân biệt.

NV
10 tháng 3 2023

\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)

- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm

- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)

Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)

\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên

8 tháng 10 2017

Đặt t = f ( f ( x ) - 1 ) - 2  phương trình trở thành: 

f ( t ) = 1 ⇔ t 4 - 4 t 2 + 1 = 1 ⇔ t = 0 ; t = ± 2

TH1: Nếu

t = 0 ⇔ f ( f ( x ) - 1 ) - 2 = 0 ⇔ f ( f ( x ) - 1 ) = 2

Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 2 ⇔ a 4 - 4 a 2 - 1 = 0 ⇔ a = ± 2 + 5

Nhận xét: Xét hàm số y = f ( x ) - 1 = x 4 - 4 x 2  có  y c d = y ( 0 ) = 0 ; y c t = y ± 2 = - 4

Với a ∈ - 4 ; 0  phương trình y = a có bốn nghiệm thực phân biệt. Với a = 0 phương trình y = a có hai nghiệm thực phân biệt. Với a < -4 phương trình y = a vô nghiệm.

Áp dụng cho trường này có 2 + 4 = 6 nghiệm.

TH2: Nếu

t = - 2 ⇔ f ( f ( x ) - 1 ) - 2 = - 2 ⇔ f ( f ( x ) - 1 ) = 0

Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 0 ⇔ a 4 - 4 a 2 + 1 = 0 ⇔ a = ± 2 + 3

Trường hợp này có 2 + 2 + 4 + 4 = 12 nghiệm.

TH3: Nếu t = 2 ↔ f ( f ( x ) - 1 ) = 4  Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 4 ⇔ a 4 - a = ± 4 a 2 - 3 = 0 ⇔ a = ± 2 + 7

Trường hợp này có 2 + 4 = 6 nghiệm.

Vậy phương trình đã cho có tất cả 24 nghiệm thực phân biệt.

Chọn đáp án A.

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

17 tháng 1 2019

Đáp án C

Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức  f ' x f x = 2 - 2 x *  

Lấy nguyên hàm 2 vế (*), ta được  ∫ d f x f x = ∫ 2 - 2 x d x

⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C  

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó  f x = e - x 2 + 2 x  

Xét hàm số  f x = e - x 2 + 2 x  trên - ∞ ; + ∞ , có  f ' x = - 2 x + 2 = 0 ⇔ x = 1

Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0  

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt  ⇔ 0 < m < e .

15 tháng 11 2018

2 tháng 4 2018