Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bảng biến thiên ta dựng bảng biên thiên của y = f x như sau:
Quan sát bảng biến thiên của hàm số y = f x ta thấy
đường thẳng y = m cắt đồ thị hàm số y = tại 6 điểm phân biệt ⇔ 2 < m < 5 .
Do m ∈ ℤ nên m ∈ {3; 4} hay có 2 giá trị của m thỏa mãn
Chọn A.
Đáp án D
Dựa vào đồ thị suy ra có một giá trị nguyên dương của m để phương trình f(x)=m có đúng hai nghiệm phân biệt là m=3.
+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây:
Phương trình 2|f(x)| - m = 0 hay |f(x)| = m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.
Dựa vào đồ thị hàm số y = |f(x)|, ta có ycbt trở thành:
Chọn A.
\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)
- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm
- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)
Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)
\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên