K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

Khi đó y' là hàm số bậc ba. Phương trình y'=0 có ít nhất một nghiệm đơn hoặc bội lẻ và đổi dấu  qua nghiệm đó. Do đó mệnh đề (*) sai.  Suy ra loại  m 2   -   3 m     +   2   ≠ 0

Chọn A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Để hàm số \(y = m{x^4} + (m + 1){x^2} + x + 3\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m = 0\\m + 1 \ne 0\end{array} \right.\) tức là \(m = 0.\)

Khi đó \(y = {x^2} + x + 3\)

Vây \(m = 0\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + x + 3\)

b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)

Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)

Vây \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

4 tháng 9 2023

a) Ta có hàm số: \(y=\left(3-m\right)x+4\) đi qua A(1 ; 4) 

\(\Leftrightarrow4=\left(3-m\right)\cdot1+4\) 

\(\Leftrightarrow4=3-m+4\)

\(\Leftrightarrow4-4=3-m\)

\(\Leftrightarrow m=3\)

b) Ta có hàm số: \(y=mx-x+3=\left(m-1\right)x+3\) y là hàm số bật nhất khi:

\(m+1\ne0\)

\(\Leftrightarrow m\ne1\)

c) Ta có ham số: \(y=\left(m^2-4\right)x-2022\) là hàm số bậc nhất khi: 

\(m^2-4\ne0\)

\(\Leftrightarrow m^2\ne4\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ne2\\m\ne-2\end{matrix}\right.\) 

d) Ta có 3 hàm số:

\(\left(d_1\right)y=x-2\)\(\left(d_2\right)y=2x-1\)\(\left(d_3\right)=y=\left(m-1\right)x+2m\)

Xét phương trình hoành độ là giao điểm của (d1) và (d2) là:

\(x-2=2x-1\)

\(\Leftrightarrow2x-x=-2+1\)

\(\Leftrightarrow x=-1\) 

\(\Rightarrow\left(d_1\right)y=-1-2=-3\)

Nên giao điểm của (d1) và (d2\(\left(-1;-3\right)\) 

\(\Leftrightarrow\left(d_3\right):-3=\left(m-1\right)\cdot-1+2m\)

\(\Leftrightarrow-3=-m+1+2m\)

\(\Leftrightarrow\left(-m+2m\right)=-1-3\)

\(\Leftrightarrow m=-4\)

e) Ta có hàm số: \(y=\left(2a-1\right)x-a+2\) cắt trục hoành tại điểm có hành độ bằng 1

Nên (d) đi qua: \(A\left(1;0\right)\)

\(\Leftrightarrow0=\left(2a-1\right)\cdot1-a+2\)

\(\Leftrightarrow0=2a-1-a+2\)

\(\Leftrightarrow0=a+1\)

\(\Leftrightarrow a=-1\) 

4 tháng 9 2023

a) m = 3

b) m # 1

c) m # 2 và -2

d) m = -4

e) a = -1

NV
17 tháng 8 2021

Hàm là bậc nhất khi:

a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)

b. \(3-m>0\Rightarrow m< 3\)

c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)

b: ĐKXĐ: \(m< 3\)

c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)

d: ĐKXĐ: \(m=2\)

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

25 tháng 12 2023

Bài 1:

Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0

=>m>3

Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0

=>m<3

Bài 4:

a: Vì \(a=3-\sqrt{2}>0\)

nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R

b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)

Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)

Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)

Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)

=9-4-1

=9-5

=4

Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)

\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)