Cho biểu thức:
P(n) = an+bn+c ( trong đó a; b; c là các số nguyên)
Chứng minh rằng: Với mọi số nguyên dương n bất kì mà P(n) luôn chia hết cho m ( với m là số cho trước) thì b2 chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại H và H là trung điểm của MN
b: Xét (O) có
ΔCMN nội tiếp
CN là đường kính
Do đó: ΔCMN vuông tại M
=>CM\(\perp\)MN
Ta có: CM\(\perp\)MN
MN\(\perp\)OA
Do đó: CM//OA
c: Ta có: ΔOMA vuông tại M
=>\(MO^2+MA^2=OA^2\)
=>\(MA^2+3^2=5^2\)
=>\(MA^2=25-9=16\)
=>\(MA=\sqrt{16}=4\left(cm\right)\)
=>AN=4(cm)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(MH\cdot OA=MO\cdot MA\)
=>\(MH\cdot5=3\cdot4=12\)
=>MH=12/5=2,4(cm)
Ta có: H là trung điểm của MN
=>MN=2*MH=4,8(cm)
Chu vi tam giác AMN là:
4+4+4,8=12,8(cm)
\(P=-x^2-8x+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=21-\left(x+4\right)^2\)
\(\left(x+4\right)^2\ge0\)
\(-\left(x+4\right)^2\le0\)
\(21-\left(x+4\right)^2\le21\)
\(P_{max}=21\Leftrightarrow x=-4\)
\(P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}=\frac{\sqrt{\left(a-1\right)\cdot1}}{a}+\frac{1}{2}\cdot\frac{\sqrt{\left(b-4\right)\cdot4}}{b}+\frac{1}{3}\cdot\frac{\sqrt{\left(c-9\right)\cdot9}}{c}\)
\(\Rightarrow P\le\frac{\frac{a-1+1}{2}}{a}+\frac{1}{2}\cdot\frac{\frac{b-4+4}{2}}{b}+\frac{1}{3}\cdot\frac{\frac{c-9+9}{2}}{c}\)
\(\Rightarrow P\le\frac{a}{2a}+\frac{b}{4b}+\frac{c}{6c}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=18\end{matrix}\right.\)
P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
=
\(\dfrac{a+b+c}{\left(b^2+c^2-a^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+c^2-b^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+b^2-c^2\right)\left(a+b+c\right)}\)
= 0+0+0 = 0
Vậy P= 0
Ngu vãi ko bt đúng không nx
Để P lớn nhất thì 540:[x-6] lớn nhất
Do đó [x-6] là số tự nhiên nhỏ nhất (số chia càng nhỏ thì thương càng lớn)
Mà trong 1 phép chia số chia luôn khác 0. Vậy x-6 = 1
x=1+6=7
Giá trị lớn nhất của P chính là 2015 + 540 : 1 = 2015 + 540 = 2555
Bài này mới chuẩn nè :
P có GTLN <=> 540 : (x - 6) có GTNN
<=> x - 6 có GTNN. Mà x - 6 ≠ 0 => x - 6 = 1
<=> x = 7. Khi đó P = 2015 + 540 : 1 = 2555 có GTLN tại x = 7
troi lanh em khong cha loi duoc