cho hình bình hành abcd vẽ 1 đường thẳng song song với ac cắt ab và bc lần lượt tại m và n chứng minh rằng diện tích adm bằng diện tích dcn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì MN // AC nên
\(\Rightarrow\frac{MA}{BA}=\frac{NC}{BC}\Rightarrow MA.BC=NC.BA\)
\(\Rightarrow MA.AD=NC.DC\)
\(\Rightarrow\frac{1}{2}.MA.AD.\sin\left(\widehat{MAD}\right)=\frac{1}{2}.NC.DC.\sin\left(\widehat{MAD}\right)\)
\(\Rightarrow\Rightarrow\frac{1}{2}.MA.AD.\sin\left(\widehat{MAD}\right)=\frac{1}{2}.NC.DC.\sin\left(\widehat{NCD}\right)\)
\(\Rightarrow S_{ADM}=S_{CDN}\)
Đề sai rồi, em kiểm tra lại, EK, HF và BD ko hề đồng quy
Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.
1. Chứng minh: các đường thẳng EK, HF, BD đồng quy
2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.
a/
Ta có
MN//AB (gt)
AD//BC=> AM//BN
=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)
b/
Xét hbh ABCD
OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Xét hbh APCQ có
IA=IC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng
c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O