K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{9}< \sqrt{1}+3\sqrt{4}+5\sqrt{9}< 1+6+15=22\)

\(12+5\sqrt{5}>12+5\sqrt{4}=12+10=22\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{9}< 12+5\sqrt{5}\)

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

NV
23 tháng 2 2019

Đặt \(\sqrt[3]{2}=x\Rightarrow2=x^3\Rightarrow x^3+1=3;x^3-1=1\)

\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{x-1}=\sqrt[3]{\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}}=\sqrt[3]{\dfrac{x^3-1}{x^2+x+1}}\)

\(=\sqrt[3]{\dfrac{1}{x^2+x+1}}=\sqrt[3]{\dfrac{1}{x^2+x+\dfrac{1}{3}\left(x^3+1\right)}}\)

\(=\sqrt[3]{\dfrac{3}{x^3+3x^2+3x+1}}=\sqrt[3]{\dfrac{27}{9\left(x+1\right)^3}}=\dfrac{1}{\sqrt[3]{9}}.\dfrac{3}{x+1}\)

\(=\dfrac{1}{\sqrt[3]{9}}\left(\dfrac{x^3+1}{x+1}\right)=\dfrac{1}{\sqrt[3]{9}}\left(1-x+x^2\right)=\dfrac{1}{\sqrt[3]{9}}\left(1-\sqrt[3]{2}+\sqrt[3]{4}\right)\)

\(=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\) (đpcm)

14 tháng 2 2023

\(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

\(P=\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{9.9}\)

\(P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(P=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(P=1-\dfrac{1}{9}=\dfrac{8}{9}\)

\(\Rightarrow P< \dfrac{8}{9}\)

\(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

\(P=\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{9.9}\)

\(P>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(P=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{9}-\dfrac{1}{10}\)

\(P=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)

\(\Rightarrow P>\dfrac{2}{5}\)

 

8 tháng 4 2017

Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+.................+\dfrac{1}{9^2}\)

Xét :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{2^3}< \dfrac{1}{2.3}\)

..................................

\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...............+\dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}=\dfrac{8}{9}\)

\(\Rightarrow A< \dfrac{8}{9}\rightarrowđpcm\) \(\left(1\right)\)

Xét :

\(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{2^3}>\dfrac{1}{3.4}\)

......................

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+.............+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{2}{5}\rightarrowđpcm\)\(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\rightarrowđpcm\)

~ Chúc bn học tốt ~

AH
Akai Haruma
Giáo viên
26 tháng 10

Lời giải:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$

Lại có:

$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.

3 tháng 1 2016

lớp 6 cứt; lớp 7,8 rồi; tao học lớp 6 mà đã biết đâu

4 tháng 11 2023

Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu 

2 tháng 1 2016

1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)

2 tháng 1 2016

làm các con kia tương tự nhé ^^