K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017


28 tháng 5 2021

\(U_5=-2\cdot5+3=-7\)

28 tháng 11 2017

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Năm số hạng đầu của dãy số là: \(u_1=1^2=1;u_2=2^2=4;u_3=3^2=9;u_4=4^2=16;u_5=5^2=25\).

Số hạng tổng quát của dãy số un là \(u_n=n^2\) với n ∈ ℕ.

b) Dạng khai triển của dãy số \(u_1=1,u_2=4,u_3=9,u_4=16,...u_n=n^2\) ...

11 tháng 10 2018

Đáp án B

20 tháng 12 2021

Ta sẽ chứng minh dãy này giảm theo quy nạp.

Với n = 1 ta có u1 = -1

Với n = 2 ta có u2 = -5

=> u> u2

Giả sử dãy trên đúng với uk > uk+1 tức 2k - 3k > 2(k + 1) - 3k + 1 <=> 2k - 2(k + 1) > 3k - 3k+1

Ta cần chứng minh dãy cũng đúng với uk+1 > uk+2

Hay 2(k + 1) - 3k+1 > 2(k + 2) - 3k+2

<=> 2k - 3.3k > 2(k + 1) - 3.3k+1

<=> 2k - 2(k + 1) > 3.(3k - 3k+1)

Thật vậy: Với k nguyên dương ta luôn có 3k - 3k+1 < 0 và 3 > 1 nên 3(3k - 3k+1) < 3k - 3k+1

Lại có 2k - 2(k + 1) > 3k - 3k+1 => 2k - 2(k + 1) > 3.(3k - 3k+1) (đpcm)

Vậy dãy un trên là dãy giảm

15 tháng 10 2023

1:

a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)

\(u_5=2\cdot29+3=61\)

b: \(u_2=u_1+2^2\)

\(u_3=u_2+2^3\)

\(u_4=u_3+2^4\)

\(u_5=u_4+2^5\)

Do đó: \(u_n=u_{n-1}+2^n\)

21 tháng 9 2019

a. Năm số hạng đầu của dãy số

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. Dự đoán công thức số hạng tổng quát của dãy số:

un =√(n+8) (1)

Rõ ràng (1) đúng với n = 1

Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1

⇒ (1) đúng với mọi n ∈ N*.