K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

Ta sẽ chứng minh dãy này giảm theo quy nạp.

Với n = 1 ta có u1 = -1

Với n = 2 ta có u2 = -5

=> u> u2

Giả sử dãy trên đúng với uk > uk+1 tức 2k - 3k > 2(k + 1) - 3k + 1 <=> 2k - 2(k + 1) > 3k - 3k+1

Ta cần chứng minh dãy cũng đúng với uk+1 > uk+2

Hay 2(k + 1) - 3k+1 > 2(k + 2) - 3k+2

<=> 2k - 3.3k > 2(k + 1) - 3.3k+1

<=> 2k - 2(k + 1) > 3.(3k - 3k+1)

Thật vậy: Với k nguyên dương ta luôn có 3k - 3k+1 < 0 và 3 > 1 nên 3(3k - 3k+1) < 3k - 3k+1

Lại có 2k - 2(k + 1) > 3k - 3k+1 => 2k - 2(k + 1) > 3.(3k - 3k+1) (đpcm)

Vậy dãy un trên là dãy giảm

19 tháng 1 2020

Câu b lộn phải là u1=3, un=√1+u2n-1 khi n>1

15 tháng 2 2017

b) \(U_n=4^n\)

U1=4^1; U2=4^2=16

c/m:

Uk=4k

Uk+1=4k+1

\(U_{k+1}-U_k=4^{k+1}-4^k=4^k\left(4-1\right)=3.4^k>0\)

\(U_{k+1}>U_k\)

Vậy kết luận dãy trên tăng dần

12 tháng 1 2018

\(u_n=1+2\left(n-1\right)=1+2n-2=2n-1\left(\text{*}\right)\)

Chứng minh

Với \(n=1\)

\(VT=1;VP=2\cdot1-1=1=VT\)

Vậy \(\left(\text{*}\right)\) đúng với \(n=1\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\ge1\) tức là

\(u_k=u_{k-1}+2=2k-1\)

Ta chứng minh \(\left(\text{*}\right)\) đúng với \(n=k+1\)

Thật vậy, từ giả thuyết quy nạp ta có

\(u_{k+1}=u_k+2=2k-1+2=2k+2-1=2\left(k+1\right)-1\)

Vậy ...

12 tháng 1 2018

Mới vô tính đú luôn toán lp 11 ak....đỉnh nhỉ...> . <...

NV
6 tháng 3 2020

\(u_3+u_7+...+u_{35}=u_1q^2+u_1q^6+...+u_1q^{34}\)

\(=u_1q^2\left(1+q^4+q^8+...+q^{32}\right)=u_1q^2.\frac{\left(q^4\right)^9-1}{q^4-1}=524286\)

2/ \(u_1^2+u_2^2+...+u_{20}^2=u_1^2+u_1^2q^2+u_1^2q^4+...+u_1^2q^{38}\)

\(=u_1^2\left(1+q^2+q^4+...+q^{38}\right)=u_1^2\frac{\left(q^2\right)^{20}-1}{q^2-1}=\frac{3^{20}-1}{2}\)

NV
6 tháng 3 2020

3/

\(u_1=2;u_n=18\)

\(u_1^2+u_2^2+...+u_n^2=484\)

\(\Leftrightarrow u_1^2+u_1^2q^2+...+u_1^2q^{2\left(n-1\right)}=484\)

\(\Leftrightarrow u_1^2\left(1+q^2+...+q^{2\left(n-1\right)}\right)=484\)

\(\Leftrightarrow1+q^2+...+q^{2\left(n-1\right)}=121\)

\(\Leftrightarrow\frac{q^{2n}-1}{q^2-1}=121\)

\(u_n=u_1q^{n-1}\Rightarrow q^{n-1}=\frac{u_n}{u_1}=9\Rightarrow q^n=9q\Rightarrow q^{2n}=81q^2\)

\(\Rightarrow\frac{81q^2-1}{q^2-1}=121\Rightarrow81q^2-1=121q^2-121\)

\(\Rightarrow q^2=3\Rightarrow q=\pm\sqrt{3}\)