K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Đáp án D.

Ta có

B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S I  

Gọi H là hình chiếu của B lên SI ⇒ B H ⊥ S I B H ⊥ B C ⇒ B H = d ( B C ; S I )  

⇒ Δ B H I ∽ Δ S A I ⇒ B H S A = B I S I ⇒ B H = S A . B I S I = a 3 . a 2 a = a 3 2

9 tháng 8 2018

Đáp án D

Gọi H là hình chiếu của B lên SI 

14 tháng 8 2019

giúp em vs ạ hic 😭😭

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

7 tháng 2 2017

Đáp án là D

+ Gọi O là giao điểm của AC,BD

MO \\ SB ⇒ SB \\ ACM

d  SB,ACM = d B,ACM = d D,ACM  .

+ Gọi I là trung điểm của AD ,

M I \ \ S A ⇒ M I ⊥ A B C D d     D , A C M     = 2 d     I , A C M  .

+ Trong ABCD: IK ⊥ AC  (với K  ∈ AC ).

+ Trong MIK: IH ⊥ MK  (với H ∈ MK ) (1)  .

+ Ta có: AC ⊥  MI ,AC ⊥  IK ⇒  AC ⊥  MIK

  ⇒  AC ⊥  IH (2) .

Từ 1 và 2 suy ra

IH ⊥  ACM ⇒  d  I ,ACM  = IH  .

+ Tính IH ?

- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .

- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4

⇒ I H = a a 2 4 a 2 + a 2 8 = a 3

Vậy   d     S B , A C M = 2 a 3 .

Lời giải khác

NV
3 tháng 3 2022

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)

b.

Gọi E là giao điểm AC và DI

I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)

\(\Rightarrow AICD\) là hình bình hành

Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật

\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông

 \(\Rightarrow AC\perp DI\) tại E

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)

Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)

\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)

3 tháng 3 2022

https://hoc24.vn/cau-hoi/.5005119341955 tương trợ em với thầy :((

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

15 tháng 3 2017

Đáp án D

Gọi M, E là trung điểm của AI và CD

Kẻ S H ⊥ C D  do mặt phẳng (SCD) vuông góc với mặt phẳng

(ABCD) nên S H ⊥ ( A B C D ) . Mặt khác SA=SI 

⇒ S M ⊥ A I ⇒ A I ⊥ ( S H M ) ⇒ H K ⊥ ( S A I )  mà CD

Song song với (SAB) ⇒ H K  là khoảng cách cần tìm.

Qua E kẻ đường thẳng song song với BC cắt AB tại F

 

⇒ H B = a 3 ;   S H = H B . tan 30 o = a 3 . 1 3 = a

Ta có 1 H K 2 = 1 S H 2 + 1 H M 2 = 1 a 2 + 4 3 a 2 = 7 3 a 2

⇒ H K = a 21 7