K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Đáp án D

Gọi M, E là trung điểm của AI và CD

Kẻ S H ⊥ C D  do mặt phẳng (SCD) vuông góc với mặt phẳng

(ABCD) nên S H ⊥ ( A B C D ) . Mặt khác SA=SI 

⇒ S M ⊥ A I ⇒ A I ⊥ ( S H M ) ⇒ H K ⊥ ( S A I )  mà CD

Song song với (SAB) ⇒ H K  là khoảng cách cần tìm.

Qua E kẻ đường thẳng song song với BC cắt AB tại F

 

⇒ H B = a 3 ;   S H = H B . tan 30 o = a 3 . 1 3 = a

Ta có 1 H K 2 = 1 S H 2 + 1 H M 2 = 1 a 2 + 4 3 a 2 = 7 3 a 2

⇒ H K = a 21 7

4 tháng 5 2018

2 tháng 4 2016

S D C I A K B

\(\begin{cases}\left(SIB\right)\perp\left(ABCD\right)\\\left(SIC\right)\perp\left(ABCD\right)\end{cases}\) \(\Rightarrow SI\perp\left(ABCD\right)\)

Kẻ \(IK\perp BC\left(K\in BC\right)\Rightarrow BC\perp\left(SIK\right)\)\(\Rightarrow\widehat{SKI}=60^0\)

Diện tích hình thang ABCD : \(S_{ABCD}=3a^2\)

Tổng diện tích các tam giá ABI và CDI bằng \(\frac{3a^2}{2}\) Suy ra \(S_{\Delta IBC}=\frac{3a^2}{2}\)

\(BC=\sqrt{\left(AB-CD\right)^2+AD^2}=a\sqrt{5}\)

\(\Rightarrow IK=\frac{2S_{\Delta IBC}}{BC}=\frac{3\sqrt{5}a}{5}\)

\(\Rightarrow SI=IK.\tan\widehat{SKI}=\frac{3\sqrt{15}a}{5}\)

Thể tích của khối chóp S.ABCD : \(V=\frac{1}{3}S_{ABCD}.SI=\frac{3\sqrt{15}a^2}{5}\)

 

27 tháng 8 2018

Đáp án phải là \(\dfrac{3a^3\sqrt{15}}{5}\)

1 tháng 10 2019

23 tháng 1 2018

 

24 tháng 2 2017

7 tháng 12 2017

26 tháng 4 2018

Đáp án C.

29 tháng 3 2018

4 tháng 11 2017