Tìm ước chung của n + 7 và 2n + 3 với với n ∈ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N. Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau
2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
Gọi d thuộc ước chung của n+3 ; 2n+5 ( d thuộc Z )
=>\(\left(n+3=2n+6\right)⋮d\) và \(2n+5⋮d\)
=> \(\left(2n+6\right)-\left(2n+5\right)⋮d\)
<=> \(2n+6-2n-5⋮d\)
<=>\(1⋮d
\Rightarrow d\in\left\{1;-1\right\}\)
Vậy ƯC(n+3;2n+5)=1;-1
1,Goi d la UC cua n+3va2n+5
Suy ra d la uoc cua 2(n+3) = 2n+6=2n+5+1
ma d la uoc cua 2n+5 suy ra d la uoc cua 1Suy ra d=1
Gọi d là ƯCLN ( n + 3 ; 2n + 5 )
Ta có : n + 3 cha hết cho d và 2n + 5 chia hết cho d
\(\Rightarrow\)( n + 3 ) - ( 2n + 5 ) chia hết cho d
\(\Rightarrow\)( 2n + 6 ) - ( 2n + 5 ) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
Vậy ƯCLN ( n + 3 ; 2n + 5 = 1
Gọi d là ƯSC của n + 3 và 2n + 5
=> n + 3 chia hết cho d => 2(n + 3)=2n+6 cũng chia hết cho d
=> 2n + 5 chia hết cho d
=> 2(n +3) - (2n + 5) = 1 chia hết cho d => d=1
Gọi d là ƯCLN ( n + 3; 2n + 5 )
Ta có : n + 3 chia hết cho d; 2n + 5 chia hết cho d
\(\Rightarrow\)( n + 3 ) - ( 2n + 5 ) chia hết cho d
= (2n + 6 ) - ( 2n + 5 ) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
Vậy ƯCLN ( n + 3; 2n + 5 ) = 1
Gọi d là ước chung cần tìm
\(\Rightarrow\)n+3\(⋮\)d và 2n+5\(⋮\)d
Do đó n+3\(⋮\)d thì 2(n+3)\(⋮\)d
\(\Rightarrow\)2(n+3)-2n+5 \(⋮\)d\(\Rightarrow\)
\(\Rightarrow\)2n-6-2n+5\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
Vậy d=1
Vậy UC(2n+5;n+3)=1
Gọi UC của n+3 và 2n+5 là a
Khi đó n+3 \(⋮\)a
\(\Rightarrow\) 2n+6 \(⋮\)a
và 2n+ 5 \(⋮\)a
\(\Rightarrow\) a= (2n+6) - (2n+5)
a= 2n+6 - 2n-5
a= 6-5
a=1
Vậy ƯC của n+3 và 2n+5 là 1
Gọi d là ước chung của n + 7 và 2n + 3
Ta có: n + 7 ⋮ d; 2n + 3 ⋮ d.
Ta có: 2(n + 7) – 2n – 3 ⋮ d
=> 11 ⋮ d
Vậy d ∈ {1; 11}