Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Nếu n chẵn thì n + 5 chia hết cho 2 => n.(n+5) chia hết cho 2
Nếu n lẻ thì n + 5 chẵn => n.(n+5) chia hết cho 2
=> đpcm
1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N. Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau
2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5
1. Gọi d là ước chung của n+3 và 2n+5
Ta có: n+3 \(⋮\)d , 2n+5\(⋮d\)
=> (2n+6)-(2n+5) chia hết cho d=> 1 chia hết cho d
Vậy ƯC của n+3 và 2n+5 là 1
2. giả sử 4 là ƯC của n+1 và 2n+5
Ta cs: n+1 \(⋮\)4 , 2n+5\(⋮\)4
=> (2n+5)-(2n+2) chia hết cho 4=> 3 chia hết cho 4(vô lý)
Vậy số 4 không thể là ƯC của n+1 và 2n+5.
Bạn ghét những đứa đặt tên dài, cậu có thể giải thích tại sao ở câu 1, n + 3=2n+6 được chứ, cả câu 2 n+1=2n+5 nữa. Cảm ơn!
1,Goi d la UC cua n+3va2n+5
Suy ra d la uoc cua 2(n+3) = 2n+6=2n+5+1
ma d la uoc cua 2n+5 suy ra d la uoc cua 1Suy ra d=1
Gọi d là ƯCLN ( n + 3 ; 2n + 5 )
Ta có : n + 3 cha hết cho d và 2n + 5 chia hết cho d
\(\Rightarrow\)( n + 3 ) - ( 2n + 5 ) chia hết cho d
\(\Rightarrow\)( 2n + 6 ) - ( 2n + 5 ) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
Vậy ƯCLN ( n + 3 ; 2n + 5 = 1
Gọi d là ƯCLN ( n + 3; 2n + 5 )
Ta có : n + 3 chia hết cho d; 2n + 5 chia hết cho d
\(\Rightarrow\)( n + 3 ) - ( 2n + 5 ) chia hết cho d
= (2n + 6 ) - ( 2n + 5 ) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
Vậy ƯCLN ( n + 3; 2n + 5 ) = 1
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
a) Gọi d = ƯC(n + 3; 2n + 5)
=> n + 3 chia hết cho d ; 2n + 5 chia hết cho d
=> 2(n+3) - (2n + 5) chia hết cho d
=> 2n + 6 - 2n - 5 chia hết cho d => 1 chia hết cho d => d = 1
Vậy......
b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy...
bài làm
1)Gọi a = ƯC(n + 3; 2n + 5)
=> n + 3 chia hết cho a ; 2n + 5 chia hết cho a
=> 2(n+3) - (2n + 5) chia hết cho a
=> 2n + 6 - 2n - 5 chia hết cho a => 1 chia hết cho a => a= 1
Vậy...................
2) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy........................
hok tốt
Gọi d là ƯSC của n + 3 và 2n + 5
=> n + 3 chia hết cho d => 2(n + 3)=2n+6 cũng chia hết cho d
=> 2n + 5 chia hết cho d
=> 2(n +3) - (2n + 5) = 1 chia hết cho d => d=1
Gọi d là ước chung cần tìm
\(\Rightarrow\)n+3\(⋮\)d và 2n+5\(⋮\)d
Do đó n+3\(⋮\)d thì 2(n+3)\(⋮\)d
\(\Rightarrow\)2(n+3)-2n+5 \(⋮\)d\(\Rightarrow\)
\(\Rightarrow\)2n-6-2n+5\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
Vậy d=1
Vậy UC(2n+5;n+3)=1
Gọi UC của n+3 và 2n+5 là a
Khi đó n+3 \(⋮\)a
\(\Rightarrow\) 2n+6 \(⋮\)a
và 2n+ 5 \(⋮\)a
\(\Rightarrow\) a= (2n+6) - (2n+5)
a= 2n+6 - 2n-5
a= 6-5
a=1
Vậy ƯC của n+3 và 2n+5 là 1