K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

+ Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).

+ Parabol y = x2 đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

23 tháng 7 2018

a)   x 2   –   x   –   2   =   0

Có a = 1; b = -1; c = -2 ⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 2.

Vậy tập nghiệm của phương trình là S = {-1; 2}

b) + Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).

+ Parabol y   =   x 2  đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình (*) chính là phương trình đã giải ở ý (a) Do đó hai nghiệm ở câu (a) chính là hoành độ giao điểm của hai đồ thị

10 tháng 5 2018

*Vẽ đồ thị hàm số y = 2 x 2

x -2 -1 0 1 2
y = 2 x 2 8 2 0 2 8

*Vẽ đồ thị hàm số y = -x + 3

Cho x = 0 thì y = 3 ⇒ (0; 3)

Cho y = 0 thì x = 3 ⇒ (3; 0)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

16 tháng 3 2017

- Bảng giá trị:

x -4 -2 0 2 4
Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 4 1 0 1 4
Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 -4 -1 0 -1 -4

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2y=1\\-2x+4y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\-2x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=-8\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2y=1\\-2x+4y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\-2x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=-8\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2y=1\\-2x+4y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\-2x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=1\\8y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-2y=3\\y=-1\end{matrix}\right.\)

9 tháng 4 2017

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều này chứng tỏ rằng đồ thị đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là x = -1; x= 2. Hai giá trị này cũng chính là nghiệm của phương trình x2 - x - 2 = 0 ở câu a).

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=-x+2\)

\(\Leftrightarrow x^2+x-2=0\)(1) 

a=1; b=1; c=-2

Vì a+b+c=0 nên phương trình (1) có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)

Thay x=1 vào (d), ta được:

y=-1+2=1

Thay x=-2 vào (d), ta được:

y=-(-2)+2=2+2=4

Vậy: (P) và (d) có hai tọa độ giao điểm là (1;1) và (-2;4)