Cho hình chóp S.ABC có đáy ABC vuông tại B, SA vuông góc với đáy ABC. Khẳng định nào dưới đây sai?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có: S A ⊥ A B C ⇒ S A ⊥ B C mà A B ⊥ B C ⇒ B C ⊥ S A B ⇒ B C ⊥ S B
Đáp án là B.
ta có S A ⊥ A B C ⇒ S A ⊥ A B S A ⊥ A C S A ⊥ B C Suy ra các phương án B, D đều đúng.
Ta có B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S B . Suy ra phương án C đúng
Ta có S ∉ A C S A ⊥ A C nên chỉ có đường thẳng SA vuông góc với AC . Do đó không tồn tại S B ⊥ A C . Phương án A sai.
Đáp án B.
Ta có S A ⊥ ( A B C ) A B ⊂ ( A B C ) B C ⊂ ( A B C ) ⇒ S A ⊥ A B và S A ⊥ B C . Vậy A, C đúng.
Do Δ A B C vuông tại B nên B C ⊥ A B .
Ta có B C ⊥ S A , S A ⊂ S A B B C ⊥ A B , A B ⊂ S A B S A ∩ A B = A ⇒ B C ⊥ S A B , S B ⊂ S A B ⇒ B C ⊥ S B
Vậy B đúng.
Đáp án C
Tam giác ABC vuông tại B ⇒ A B ⊥ B C
Mà S A ⊥ A B C ⇒ S A ⊥ B C ⇒ B C ⊥ S A B ⇒ B C ⊥ S B
Và A H ⊥ B C mà A H ⊥ S B ⇒ A H ⊥ S B C ⇒ A H ⊥ B C A H ⊥ S C
Vậy hai đường thẳng S B , A C chéo nhau.