Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, BC, CA.
a) Chứng minh AMNQ là hình chữ nhật
b) Lấy điểm K đối xứng với điểm N qua điểm Q, điểm I đối xứng với điểm N qua M. Chứng minh hai điểm I và K đối xứng nhau qua điểm A.
c) Kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác MHNQ là hình thang cân
d) Khi AB cố định còn điểm C di động trên tia Ax vuông góc với AB, thì tâm của hình chữ nhật AMNQ chạy trên đường nào?
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AQ và MN=AQ
hay AQNM là hình bình hành
mà \(\widehat{A}=90^0\)
nên AQNM là hình chữ nhật