K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

Đáp án A

20 tháng 12 2018

Diện tích đáy  S = 4 a 2

c o t 2 α + 1 = 1 sin 2 α ⇒ c o t 2 α - 1 = 1 sin 2 α - 2

Do đó (C) và (D) đúng

Từ câu (D) suy ra  V = 4 a 3 3 . 1 - sin 2 α sin 2 α = 4 a 3 3 . cos 2 α sin α . Do đó (B) đúng

Vậy (A) là kết quả sai

Đáp án A

4 tháng 1 2019

3 tháng 2 2019

Đáp án C

Ta có, CD song song mặt phẳng (SAB) chứa SA nên khoảng cách giữa SA và CD chính là khoảng cách từ CD đến (SAB).

Gọi I, K theo thứ tự là trung điểm AB, CD thì: 

Trong đó H là hình chiếu từ K lên SI

9 tháng 9 2019

Đáp án C

Ta có, CD song song mặt phẳng (SAB) chứa SA nên khoảng cách giữa SA và CD chính là khoảng cách từ CD đến (SAB).

Gọi I, K theo thứ tự là trung điểm AB, CD thì:

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
23 tháng 5 2018

Đáp án A

15 tháng 12 2018

Đáp án A

Đặt a> 0 cạnh hình vuông là   Dễ  thấy  

Gọi O là tâm của đáy. Vẽ AH ⊥ SC tại, H, AH cắt SO tại I thì   A I O ^ = φ

Qua I vẽ  đường  thẳng  song  song DB cắt SD, SB theo  thứ  tự  tại K, L. Thiết diện chính là tứ giác

ALHK và tứ giác này có hai đường chéo AH  ⊥ KL Suy ra  

Ta có:  

Theo giả thiết

Giải được

Suy ra  φ = a r c sin 33 + 1 8

9 tháng 7 2018

Phương pháp:

Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và vuông góc với giao tuyến.

Cách giải:

S . ABCD là chóp tứ giác đều cạnh bên SA = SB = SC = SD = 2a . Gọi O

là giao của AC và BD => SO (ABCD)

Gọi H  là trung điểm CD => SH  ⊥ CD

Mà ABCD là hình vuông nên OC = OD => OH ⊥ CD

Ta có 

=> góc giữa mặt đáy (ABCD) và mặt bên (SCD) là SHO

 

 Ta có OH là đường trung bình của 

Xét tam giác SHC, theo định lý Pytago ta có 

Xét tam giác SOH vuông tại S (do SO(ABCD))

Chọn A.