K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Chọn A

Ta có;

Hàm số y = sinx đồng biến trên mỗi khoảng 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Đáp án D.

25 tháng 10 2021

Cô giải thích sao lại ra D đi ạ

NV
18 tháng 6 2021

1.

\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)

Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

NV
18 tháng 6 2021

2.

Xét hàm \(f\left(x\right)=x^2-2x-3\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

16 tháng 4 2018

Chọn A

Ta có;

Hàm số y = sinx đồng biến trên mỗi khoảng 

20 tháng 7 2017

y = x – sinx, x  ∈  [0; 2 π ].

y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2 π ]

Dấu “=” xảy ra chỉ tại x = 0 và x = 2 π .

Vậy hàm số đồng biến trên đoạn [0; 2 π ].

19 tháng 5 2017

11 tháng 1 2018

20 tháng 12 2019

Tập xác định: D = R; y′ =  x 2  − (1 + 2cosa)x + 2cosa

y′= 0 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y’ < 0 ở ngoài khoảng nghiệm nên để hàm số đồng biến với mọi x > 1 thì 2cosa ≤ 1

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(vì a ∈ (0; 2 π ).

3 tháng 3 2017