K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Chọn A

31 tháng 8 2019

Đáp án A

20 tháng 2 2017

Chọn B.

Tâm đối xứng của đồ thị hàm số này là giao điểm của 2 đường tiệm cận  1 2 ; 1 2

15 tháng 8 2017

Chọn B

14 tháng 7 2018

Đáp án B

1 tháng 8 2017

Đáp án B.

y' = 3x2 + 6x – 9

y’’ = 6x + 6

y’’ = 0 ó x = -1.

Thay x = -1 vào hàm số y = 12

21 tháng 2 2017

Đáp án là  D.

• Đồ thị có tiệm cận đứng và tiệm cận ngang làn lượt là:  x = - 1 2 ; y = 3 2

•  Giao điểm hai đường tiệm cận là tâm đối xứng của đồ thị hàm số.

16 tháng 11 2019

Đáp án A

Phương pháp: Tham số hóa điểm thuộc đồ thị hàm số (C).

Lấy điểm đối xứng với điểm đó qua O (Điểm (a;) đối xứng với điểm (-a;-b)qua gốc tọa độ O).

Cho điểm đối xứng vừa xác định thuộc (C).

Cách giải:

Chú ý và sai lầm : Có thể thử trực tiếp từng đáp án và suy ra kết quả.

27 tháng 6 2017

Đáp án C

Tâm đối xứng là giao điểm 2 tiệm cận.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)

b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.

Như vậy hàm số \(y = \sin x\) là hàm số lẻ.

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy, hàm số \(y = \sin x\) có tuần hoàn .

d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)