\(\left(5^{2022}+5^{2021}\right):5^{2021}\)
giải giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2021 - (1/3)² . 3²
= 2021 - 1/9 . 9
= 2021 - 1
= 2020
b) 5/10 + 9 . (-3/2)
= 1/2 - 27/2
= -26/2
= -13
c) -10 . (-2021/2022)⁰ + (2/5)² : 2
= -10 . 1 + 4/25 . 2
= -10 + 8/25
= -68/7
\(a,2021-\left(\dfrac{1}{3}\right)^2\cdot3^2\\ =2021-\dfrac{1}{9}\cdot9\\ =2021-\dfrac{9}{9}\\ =2021-1=2020\\ b,\dfrac{5}{10}+9\cdot\dfrac{-3}{2}\\ =\dfrac{5}{10}+\dfrac{-27}{2}\\ =\dfrac{5}{10}+\dfrac{-135}{10}\\ =-\dfrac{130}{10}\\ =-13\\ c,-10\cdot\left(-\dfrac{2021}{2022}\right)^0+\left(\dfrac{2}{5}\right)^2:2\\ =-10\cdot1+\dfrac{4}{25}\cdot\dfrac{1}{2}\\ =-10+\dfrac{4}{50}\\ =-10+\dfrac{2}{25}\\ =-\dfrac{248}{25}\)
\(2022\times2005-2000\times2022+15\times2022-20\times2021\)
\(=2022\times\left(2005-2000+15\right)-20\times2021\)
\(=2022\times20-20\times2021\)
\(=20\times\left(2022-2021\right)\)
\(=20\times1\)
\(=20\)
a, 2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 - 20 \(\times\) 2021
= (2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 )- 20 \(\times\) 2021
= 2022 \(\times\) (2005 - 2000 + 15) - 20 \(\times\) 2021
= 2022 \(\times\) (5 +15) - 20 \(\times\) 2021
= 2022 \(\times\) 20 - 20 \(\times\) 2021
= 20 \(\times\) (2022 - 2021)
= 20 \(\times\) 1
= 20
\(\left(5^{2022}:5^{2021}\right):5^{2021}\)
\(=5^{2022-2021}:5^{2021}\)
\(=5^1:5^{2021}\)
\(=\dfrac{5}{5^{2021}}\)
\(=\dfrac{1}{5^{2021-1}}\)
\(=\dfrac{1}{5^{2020}}\)
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Nhận thấy VT\(\ge\)0 với mọi x,y,z
Dấu = xảy ra <=> x=y=z
Thay x=y=z vào pt (2) ta được:
\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy (x;y;z)=(3;3;3)
\(=5^{2022}:5^{2021}+5^{2021}:5^{2021}=5+1=6\)