K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

21 tháng 10 2017

22 tháng 9 2017

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)

19 tháng 3 2017

20 tháng 3 2017

Chọn C

31 tháng 10 2019

Đặt  t = sin x + cos x   − 2 ≤ t ≤ 2 ⇒ sin x cos x = t 2 − 1 2 .

Phương trình trở thành t 2 − 1 2 − t + m = 0 ⇔ − 2 m = t 2 − 2 t − 1 ⇔ t − 1 2 = − 2 m + 2 .

Do − 2 ≤ t ≤ 2 ⇒ − 2 − 1 ≤ t − 1 ≤ 2 − 1 ⇔ 0 ≤ t − 1 2 ≤ 3 + 2 2 .

Vậy để phương trình có nghiệm 

⇔ 0 ≤ − 2 m + 2 ≤ 3 + 2 2 ⇔ − 1 + 2 2 2 ≤ m ≤ 1 → m ∈ ℤ m ∈ − 1 ; 0 ; 1 .                             

Chọn đáp án C.

NV
16 tháng 12 2020

\(m+3\sqrt[3]{m+3cosx}=cos^3x\)

Đặt \(\sqrt[3]{m+3cosx}=t\Rightarrow m=t^3-3cosx\)

\(\Rightarrow t^3-3cosx+3t=cos^3x\)

\(\Leftrightarrow t^3+3t=cos^3x+3cosx\)

Hàm \(f\left(t\right)=t^3+3t\) có \(f'\left(t\right)=3t^2+3>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow t=cosx\) (hoặc là bạn liên hợp cũng được, tùy thích)

\(\Leftrightarrow m=t^3-3cosx=cos^3x-3cosx\)

Đặt \(cosx=u\in\left[-1;1\right]\Rightarrow f\left(u\right)=u^3-3u=m\)

Xét hàm \(f\left(u\right)=u^3-3u\) trên \(\left[-1;1\right]\)

\(f'\left(u\right)=3u^2-3\Rightarrow u=\pm1\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=-2\Rightarrow-2\le f\left(u\right)\le2\)

\(\Rightarrow-2\le m\le2\)

12 tháng 2 2019

Đáp án B

12 tháng 1 2018

Đáp án B

Phương pháp:

Sử dụng phương pháp hàm số để giải phương trình.

Cách giải :

s inx 2019 − cos 2 x 2018 − cos x + m 2019 − sin 2 x + m 2 + 2 m cos x 2018 = cos x − s inx + m

f ' t = 2018 + t 2 2018 − 1 + t . 1 2018 2018 + t 2 − 2017 2018 .2 t ≥ 0 ∀ t ∈ − 1 ; 1   Suy   ra