K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Đáp án B

Phương pháp:

Đồ thị của hàm số y = f(x) có hai tiệm cận ngang ó Tập xác định của y = f(x) chứa khoảng âm vô cực và dương vô cực và  ∃ a,b ∈ R, a ≠ b: 

Cách giải: 

Điều kiện xác định: 

Đồ thị hàm số  có 2 tiệm cận ngang => Tập xác định D phải chứa khoảng âm vô cực và dương vô cực

Ta tìm m để tồn tại giá trị của a  ∈ R

TH1: Khi đó R

TH2: . Khi đó  R

R, 

+) Giải phương trình:

Vậy, với mọi số nguyên  hàm số  luôn có 2 tiệm cận ngang.

Số giá trị nguyên của m thỏa mãn là: 2019 số.

 

11 tháng 4 2018

Suy ra đồ thị hàm số có 1 đường TCN y = 0.

Do đó đồ thị hàm số có đúng  2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2   -   2 x   +   4   =   0  có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn A

28 tháng 8 2019

Đáp án A

 Đường thẳng   y = y 0 được gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số   y = f x nếu   lim x → + ∞ f x = y 0 hoặc lim x → − ∞ f x = y 0

y = m x − x 2 − 2 x + 2 = m 2 x 2 − x 2 + 2 x − 2 m x + x 2 − 2 x + 2 = m 2 − 1 x 2 + 2 x − 2 m x + x 2 − 2 x + 2

Để hàm phân thức có tiệm cận ngang thì bậc tử phải nhỏ hơn hoặc bằng bậc mẫu ⇔ m 2 − 1 = 0 ⇔ m = 1 m = − 1

Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.

1 tháng 1 2017

Điều kiện: mx2+ 1 > 0.                                

- Nếu m= 0 thì hàm số trở thành y= x+ 1  không có tiệm cận ngang.

- Nếu m< 0  thì hàm số xác định  ⇔ - 1 - m < x < 1 - m

Do đó, lim x → ± ∞ y   không tồn tại nên đồ thị hàm số không có tiệm cận ngang.

- Nếu m> 0  thì hàm số xác định với mọi x.

Suy ra đường thẳng y = 1 m  là tiệm cận ngang của đồ thị hàm số khi x → + ∞ .

Suy ra đường thẳng  y = - 1 m là tiệm cận ngang của đồ thị hàm số khi x → - ∞

Vậy m> 0 thỏa mãn yêu cầu đề bài.

Chọn D.

 

27 tháng 11 2018

Đáp án C

Phương pháp: Để  đồ  thị  hàm số  có tiệm cận đứng x   =   x 0  thì    x 0 là nghiệm của phương trình mẫu mà không là nghiệm của phương trình tử.

Cách giải:

ĐK:  x ≥ - 1 và  x 2 - ( 1 - m ) x + 2 m > 0

Xét phương trình 1 + x + 1 = 0  vô nghiệm

Xét phương trình  x 2 - ( 1 - m ) x + 2 m = 0 (*). Để đồ thị  hàmsố có hai TCĐ thì phương trình có 2 nghiệm phân biệt thỏa mãn ĐK  x ≥ - 1

Khi đó gọi hai nghiệm của phương trình là  x 1 > x 2  ta có:

Kết hợp điều kiện ta có: 

Thử lại:

Với 

Khi đó hàm số có dạng  có 1 tiệm cận đứng x = 4 => Loại

Với 

Khi đó hàm số có dạng  có 2 tiệm cận đứng x = 1± 3 => TM

Khi 

Khi đó hàm số có dạng  có 2 tiệm cận đứng x = 0; x = 1 => TM

Vậy 

24 tháng 3 2018

Chọn B.

31 tháng 5 2017

24 tháng 8 2019

Đáp án là B

28 tháng 12 2017

Đáp án là B

Nhận xét: 

Đặt 

Hàm số đã cho không có đường tiệm cận đứng khi và chỉ khi 

Vì m là số nguyên nên 

26 tháng 5 2018

Đồ thị hàm số đã cho có 2 đường tiệm cận đứng ⇔  phương trình g(x) có 2 nghiệm phân biệt