K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Đồ thị hàm số đã cho có 2 đường tiệm cận đứng ⇔  phương trình g(x) có 2 nghiệm phân biệt 

26 tháng 2 2018

Đáp án C

Yêu cầu bài toán ⇔ x 2 - ( 1 - m ) x + 2 m = 0  có 2 nghiệm phân biệt lớn hơn hoặc bằng -1 

Khi và chỉ khi ∆ > 0 x 1 + x 2 + 2 ≥ 0 x 1 + 1 x 2 + 1 ≥ 0 ⇔ 1 - m 2 - 4 . 2 m > 0 1 - m + 2 ≥ 0 2 m + 2 - m + 1 ≥ 0 ⇔ - 2 ≤ m ≤ 5 - 2 6 .

28 tháng 8 2019

Đáp án A

 Đường thẳng   y = y 0 được gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số   y = f x nếu   lim x → + ∞ f x = y 0 hoặc lim x → − ∞ f x = y 0

y = m x − x 2 − 2 x + 2 = m 2 x 2 − x 2 + 2 x − 2 m x + x 2 − 2 x + 2 = m 2 − 1 x 2 + 2 x − 2 m x + x 2 − 2 x + 2

Để hàm phân thức có tiệm cận ngang thì bậc tử phải nhỏ hơn hoặc bằng bậc mẫu ⇔ m 2 − 1 = 0 ⇔ m = 1 m = − 1

Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.

21 tháng 6 2019

5 tháng 1 2020

Ta có  đồ thị hàm số luôn có TCN y = 1

Do đó để ycbt thỏa mãn  

Chọn C.

27 tháng 9 2018

17 tháng 1 2019

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

1 tháng 8 2019

Đáp án B

Phương pháp:

Đồ thị của hàm số y = f(x) có hai tiệm cận ngang ó Tập xác định của y = f(x) chứa khoảng âm vô cực và dương vô cực và  ∃ a,b ∈ R, a ≠ b: 

Cách giải: 

Điều kiện xác định: 

Đồ thị hàm số  có 2 tiệm cận ngang => Tập xác định D phải chứa khoảng âm vô cực và dương vô cực

Ta tìm m để tồn tại giá trị của a  ∈ R

TH1: Khi đó R

TH2: . Khi đó  R

R, 

+) Giải phương trình:

Vậy, với mọi số nguyên  hàm số  luôn có 2 tiệm cận ngang.

Số giá trị nguyên của m thỏa mãn là: 2019 số.

 

29 tháng 7 2019