Cho lăng trụ A B C D A 1 B 1 C 1 D 1 có đáy ABCD là hình chữ nhật với AB=a, AD= a 3 Hình chiếu vuông góc của A 1 lên ( ABCD) trung với giao điểm của AC và BD. Tính khoảng cách từ điểm B1 đến mặt phẳng ( A 1 B D )
A. a 3
B. a 2
C. a 3 2
D. a 3 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AH\perp\left(ABCD\right)\Rightarrow\widehat{A'AH}\) là góc giữa AA' và (ABCD) \(\Rightarrow\widehat{A'AH}=60^0\)
\(\Rightarrow AA'=\dfrac{AH}{cos60^0}=a\)
a. Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABCD\right)\Rightarrow A'H\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABB'A'\right)\)
Mà \(AD\in\left(ADD'A'\right)\Rightarrow\left(ADD'A'\right)\perp\left(ABB'A'\right)\)
b. Kiểm tra lại đề câu này
Hai mặt phẳng (ABCD) và (A'B'C'D') hiển nhiên song song (theo tính chất lăng trụ) nên góc giữa chúng bằng 0. Do đó thấy ngay \(tan\left(\left(ABCD\right);\left(A'B'C'D'\right)\right)=0\)
Có lẽ không ai bắt tính điều này cả.
c.
\(\left(ABCD\right)||\left(A'B'C'D'\right)\Rightarrow d\left(A;\left(A'B'C'D'\right)\right)=d\left(A';\left(ABCD\right)\right)=A'H=a\)
Đáp án C
Do A B ' ∩ A ' B cắt nhau tại trung điểm mỗi đường.
Do đó d B ' = d A = d C
+) Dựng C H ⊥ B D ⇒ C H ⊥ A ' B D
+) Do đó: d B ' ; A ' B D = d C ; A ' B D = C H
= B C . C D B D = a 3 2 .
Đáp án C
Do A B ' ∩ A ' B cắt nhau tại trung điểm mỗi đường.
Do đó d B ' = d A = d C
+) Dựng C H ⊥ B D ⇒ C H ⊥ ( A ' B D )
+) Do đó
\(AA'=\dfrac{2a}{\sqrt{3}}\)
\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)