Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) Ta có: \(x+\dfrac{1}{3}=\dfrac{2}{6}\)
\(\Leftrightarrow x+\dfrac{1}{3}=\dfrac{1}{3}\)
hay x=0
Vậy: x=0
b) Ta có: \(x-\dfrac{1}{4}=\dfrac{1}{-2}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{2}+\dfrac{1}{4}=\dfrac{-2}{4}+\dfrac{1}{4}=\dfrac{-1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
c) Ta có: \(\dfrac{-1}{6}=\dfrac{3}{2}x\)
\(\Leftrightarrow x=\dfrac{-1}{6}:\dfrac{3}{2}=\dfrac{-1}{6}\cdot\dfrac{2}{3}\)
hay \(x=\dfrac{-1}{9}\)
Vậy: \(x=\dfrac{-1}{9}\)
a) Ta có: \(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{5;-3\right\}\)
b) Ta có: \(\dfrac{x-4}{6}=\dfrac{-1}{3}\)
\(\Leftrightarrow x-4=-2\)
hay x=2
Vậy: x=2
a/
\(x-\dfrac{1}{-4}=-\dfrac{4}{x-1}\)
\(x+\dfrac{1}{4}+\dfrac{4}{x-1}=0\)
\(\dfrac{x\left(x-1\right)4}{4\left(x-1\right)}+\dfrac{16}{4\left(x-1\right)}=0\)
\(4x\left(x-1\right)+16=0\)(quy tắc khử mẫu lớp 8)
\(4x^2-4x+16=0\)
\(4x^2-2x-2x+16=0\)
\(\left(4x^2-2x\right)-\left(2x-16\right)=0\)
\(2x\left(2x-1\right)-2\left(x-16\right)=0\)
(x+2)+(x+4)+(x+6)+...+(x+32)=352(x+2)+(x+4)+(x+6)+...+(x+32)=352
(x+x+...+x)+(2+4+6+...+32)=352(x+x+...+x)+(2+4+6+...+32)=352
16x+272=35216x+272=352
16x=352−272=8016x=352−272=80
x=80:16=5
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
\(\Rightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0\)
\(\left(x+1\right).\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\ne0\)
=> x + 1 = 0
x = - 1
a, \(x\) \(\times\) \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\) = \(\dfrac{5}{6}\)
\(x\) \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{5}{6}\) + \(\dfrac{3}{4}\)
\(x\) \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{19}{12}\)
\(x\) = \(\dfrac{19}{12}\) : \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{19}{6}\)
b, \(x\) : \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\) = \(\dfrac{5}{6}\)
\(x\): \(\dfrac{1}{2}\) = \(\dfrac{5}{6}\) + \(\dfrac{3}{4}\)
\(x\) : \(\dfrac{1}{2}\) = \(\dfrac{19}{12}\)
\(x\) = \(\dfrac{19}{12}\) \(\times\) \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{19}{24}\)
c, \(x\) \(\times\) \(\dfrac{3}{4}\) + \(x\) \(\times\) \(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)
\(x\) \(\times\) ( \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\)) = \(\dfrac{7}{8}\)
\(x\) \(\times\) 1 = \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{7}{8}\)
d, \(x\times\) \(\dfrac{3}{4}\) - \(x\) \(\times\) \(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)
\(x\) \(\times\) ( \(\dfrac{3}{4}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{8}\)
\(x\) \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{7}{8}\) : \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{7}{4}\)
3:
a: 3^x*3=243
=>3^x=81
=>x=4
b; 2^x*16^2=1024
=>2^x=4
=>x=2
c: 64*4^x=16^8
=>4^x=4^16/4^3=4^13
=>x=13
d: 2^x=16
=>2^x=2^4
=>x=4