Trục căn thức ở mẫu biểu thức 2 a 2 - a với a ≥ 0; a ≠ 4 ta được:
A. - 2 a a + 4 a 4 - a
B. 2 a a - 4 a 4 - a
C. 2 a a + 4 a 4 - a
D. - 2 a a + 4 a 4 - a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{\sqrt{5}}{\sqrt{7}}=\dfrac{\sqrt{5\cdot7}}{7}=\dfrac{\sqrt{35}}{7}\)
b: \(\dfrac{2}{\sqrt{a}-1}=\dfrac{2\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{2\sqrt{a}+2}{a-1}\)
a) \(\dfrac{1+\sqrt{a}}{1-\sqrt{a}}=\dfrac{a+2\sqrt{a}+1}{1-a}\)
b) \(\dfrac{a-2\sqrt{a}}{2-\sqrt{a}}=\dfrac{-\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}=-\sqrt{a}\)
a) \(\dfrac{a}{3\sqrt{a}-1}=\dfrac{a\left(3\sqrt{a}+1\right)}{9a-1}\)
\(A=\frac{2}{\sqrt[3]{2}\left(\sqrt[3]{2}^2+\sqrt[3]{2}+1\right)}=\frac{2\left(\sqrt[3]{2}-1\right)}{\sqrt[3]{2}\left(\sqrt[3]{2}^2+\sqrt[3]{2}+1\right)\left(\sqrt[3]{2}-1\right)}=\frac{2\left(\sqrt[3]{2}-1\right)}{\sqrt[3]{2}}=2-\sqrt[3]{4}\)
\(\dfrac{1}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-1^2}\)
\(=\dfrac{\sqrt{a}+1}{a-1}\)