Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\frac{20+6\sqrt{10}-5\sqrt{10}-9}{16-10}.\)
\(=\frac{11-\sqrt{10}}{6}\)
\(b,=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{54-8}\)
\(=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{46}\)
\(a,\frac{\sqrt{5}}{\sqrt{3-\sqrt{5}}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)}}\)
\(=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{9-5}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{4}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{2}\)
bạn hãy nhân ở mẫu với biểu thức tương ướng để tạo ra biểu thức liên hợp , là HĐT số 3 ạ
\(A=\dfrac{2}{2.\sqrt[3]{2}+2+\sqrt[3]{2^2}}=\dfrac{2}{\left(\sqrt[3]{2}\right)^2+2.\left(\sqrt[3]{2}\right)+\left(\sqrt{2}\right)^2}\)
\(A=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)\left[\left(\sqrt[3]{2}\right)^2+2.\left(\sqrt[3]{2}\right)+\left(\sqrt{2}\right)^2\right]}=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{\left(\sqrt[3]{2}\right)^3-\left(\sqrt{2}\right)^3}=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{2-2\sqrt{2}}\)
\(A=\dfrac{2\left[.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)\right].\left(1+\sqrt{2}\right)}{2\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\left(\sqrt{2}+1\right)\left(\sqrt{2}-\sqrt[3]{2}\right)\)
a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)
\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)
\(=3\sqrt{3}\)
Vậy..
b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)
\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
Vậy..
\(\frac{1}{\sqrt{13-\sqrt{48}}}=\frac{1}{\sqrt{12+1+2\cdot2\sqrt{3}}}=\frac{1}{2\sqrt{3}+1}=\frac{-1+2\sqrt{3}}{11}\)\
Câu b nè:
\(B=\frac{2}{\left(\sqrt[3]{2}\right)^2+\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^3}\)
Đặt: \(\sqrt[3]{2}=a\)
=> \(B=\frac{a^3}{a^3+a^2+a}=\frac{a^2}{a^2+a+1}=\frac{a^2\left(a-1\right)}{\left(a^2+a+1\right)\left(a-1\right)}=\frac{a^3-a^2}{a^3-1}=\frac{2-\sqrt[3]{4}}{2-1}=2-\sqrt[3]{4}\)
Vậy \(B=2-\sqrt[3]{4}\)
\(A=\frac{2}{\sqrt[3]{2}\left(\sqrt[3]{2}^2+\sqrt[3]{2}+1\right)}=\frac{2\left(\sqrt[3]{2}-1\right)}{\sqrt[3]{2}\left(\sqrt[3]{2}^2+\sqrt[3]{2}+1\right)\left(\sqrt[3]{2}-1\right)}=\frac{2\left(\sqrt[3]{2}-1\right)}{\sqrt[3]{2}}=2-\sqrt[3]{4}\)