K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

28 tháng 9 2021

\(a,\) Số số hạng là \(\left(40-2\right):2+1=20\left(số\right)\)

Tổng là \(\left(40+2\right)\times20:2=420\)

\(b,\) Số số hạng là \(\left(39-1\right):2+1=20\left(số\right)\)

Tổng là \(\left(39+1\right)\times20:2=400\)

28 tháng 9 2021

a) 2 + 4 + 6 + 8 + ... + 34 + 36 + 38 + 40

= ( 2 + 42 ) + ( 4 + 38 ) + .... + ( 20 + 22 )

= 42 \(\times\) 10

= 420

b) 1 + 3 + 5 + 7 + ... + 35 + 37 + 39

= ( 1 + 39 ) + ( 3 + 37 ) + ...+ ( 19 + 21 )

= 40 \(\times\) 10

= 400

2:

a: \(=\dfrac{1}{3}\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)

1:

\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)

\(=-4-\dfrac{1}{4}=-\dfrac{17}{4}\)

8 tháng 10 2023

Bài 1:

\(A=\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\)

\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)

\(A=\left(7-6-5\right)-\left(\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\)

\(A=-4-\dfrac{3+5-7}{4}+\dfrac{1+4-5}{3}\)

\(A=-4-\dfrac{1}{4}+\dfrac{0}{3}\)

\(A=-\dfrac{16}{4}-\dfrac{1}{4}+0\)

\(A=\dfrac{-16-1}{4}\)

\(A=-\dfrac{17}{4}\)

Bài 2:

\(\dfrac{1}{3}\cdot-\dfrac{4}{5}+\dfrac{1}{3}\cdot-\dfrac{6}{5}\)

\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{-4-6}{5}\)

\(=\dfrac{1}{3}\cdot\dfrac{-10}{5}\)

\(=\dfrac{1}{3}\cdot-2\)

\(=-\dfrac{2}{3}\)

21 tháng 4 2022

a. 1/3 + 1/4 - 1/6

= 7/12 - 1/6

= 5/12

b. 2/5 x 5/7 : 3/4

= 2/7 : 3/4

= 8/21

9 tháng 4 2023

a) \(\dfrac{1}{3}+\dfrac{4}{3}\times\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{4}{6}=\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)

b) \(\dfrac{3}{5}\times\dfrac{4}{7}:\dfrac{16}{21}=\dfrac{3}{5}\times\dfrac{4}{7}\times\dfrac{21}{16}=\dfrac{12}{35}\times\dfrac{21}{16}=\dfrac{252}{560}=\dfrac{9}{20}\)

22 tháng 11 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(l\right)\\x=-2\left(l\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\Leftrightarrow A\in\varnothing\\ b,\text{ý bạn là rút gọn A hả?}\\ A=\dfrac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x+4}{\left(x-2\right)\left(x+2\right)}\)

22 tháng 11 2021

B =))

7 tháng 9 2021

\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)

\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)

Bài 2: 

a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)

\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)

\(=-\dfrac{3}{5}\)

b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)

\(\Leftrightarrow8x-1=5\)

\(\Leftrightarrow8x=6\)

hay \(x=\dfrac{3}{4}\)

29 tháng 6 2021

`a)100x^2-20x+1`

`=(10x-1)^2`

Thay `x=1/10`

`=>100x^2-20x+1=(1-1)^2=0`

`b)49x^2-42x+10`

`=49*4/49-42*2/7+10`

`=4-12+10=2`

`c)25x^2+40x+16y^2`

`=(5x+4y)^2=(2+3)^2=25`

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

$x=\frac{\sqrt{5}-1}{2}$

$2x=\sqrt{5}-1$

$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$

$\Leftrightarrow 4x^2+4x-4=0$

$\Leftrightarrow x^2+x-1=0$

Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)

\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)

\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)

\(=(-1)^2=1\)

NV
23 tháng 8 2021

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)

a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1

=2

b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\sqrt{x}-2\)

=3

Bài 1: 

\(A=\dfrac{-1}{3}+1+\dfrac{1}{3}=1\)

\(B=\dfrac{2}{15}+\dfrac{5}{9}-\dfrac{6}{9}=\dfrac{2}{15}-\dfrac{1}{9}=\dfrac{18-15}{135}=\dfrac{3}{135}=\dfrac{1}{45}\)

\(C=\dfrac{-1}{5}+\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{-1}{5}-\dfrac{1}{2}=\dfrac{-7}{10}\)

Bài 2: 

a: \(=\dfrac{1}{5}+\dfrac{1}{2}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{2}{21}-\dfrac{10}{21}+\dfrac{3}{20}\)

\(=\left(\dfrac{1}{5}+\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{2}{21}-\dfrac{10}{21}\right)+\left(\dfrac{1}{2}+\dfrac{3}{20}\right)\)

\(=\dfrac{-8}{21}+\dfrac{13}{20}=\dfrac{113}{420}\)

b: \(B=\dfrac{21}{23}-\dfrac{21}{23}+\dfrac{125}{93}-\dfrac{125}{143}=\dfrac{6250}{13299}\)

30 tháng 1 2022

Bài 3:

\(\dfrac{7}{3}-\dfrac{1}{2}-\left(-\dfrac{3}{70}\right)=\dfrac{7}{3}-\dfrac{1}{2}+\dfrac{3}{70}=\dfrac{490}{210}-\dfrac{105}{210}+\dfrac{9}{210}=\dfrac{394}{210}=\dfrac{197}{105}\)

\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}=\dfrac{5}{12}+\dfrac{3}{16}+\dfrac{3}{4}=\dfrac{20}{48}+\dfrac{9}{48}+\dfrac{36}{48}=\dfrac{65}{48}\)

Bài 4:

 \(\dfrac{3}{4}-x=1\)

\(\Rightarrow-x=1-\dfrac{3}{4}\)

\(\Rightarrow x=-\dfrac{1}{4}\)

Vậy: \(x=-\dfrac{1}{4}\)

\(x+4=\dfrac{1}{5}\)

\(\Rightarrow x=\dfrac{1}{5}-4\)

\(\Rightarrow x=-\dfrac{19}{5}\)

Vậy: \(x=-\dfrac{19}{5}\)

\(x-\dfrac{1}{5}=2\)

\(\Rightarrow x=2+\dfrac{1}{5}\)

\(\Rightarrow x=\dfrac{11}{5}\)

Vậy: \(x=\dfrac{11}{5}\)

\(x+\dfrac{5}{3}=\dfrac{1}{81}\)

\(\Rightarrow x=\dfrac{1}{81}-\dfrac{5}{3}\)

\(\Rightarrow x=-\dfrac{134}{81}\)

Vậy: \(x=-\dfrac{134}{81}\)