Tứ giác ABCD nội tiếp một đường tròn và góc C ^ = 75 0 . Khẳng định nào sau đây đúng.
a, A ^ = 105 0
b, B ^ = 75 0
c, C ^ = 90 0
d, D ^ = 75 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tứ giác ABCD nội tiếp (O)
=> góc B + góc C = 180 độ (tổng 2 góc đối bằng 180 độ)
=> 60 + góc C = 180
=> góc C = 180 - 60 = 120 độ
Tiếp tục, ta cũng có góc A + góc D = 180 độ
=> 75 + góc D = 180
=> góc D = 180 - 75 = 105 độ
Note: Bài này đoạn kết còn có cách tính khác, cần inbox mình
Theo mk thi: goc C=105° va goc D=120°
Aj thay dung thj ung ho mk nha!!! Cam on.
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Đúng (theo hệ quả b).
b) Sai. Vì trong cùng một đường tròn, các góc nội tiếp cùng chắn 1 cung hoặc chắn các cung bằng nhau thì bằng nhau.
Trong một đường tròn, các góc nội tiếp bằng nhau chưa chắc cùng chắn một cung.
Kiến thức áp dụng
Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Hệ quả: Trong một đường tròn, các góc nội tiếp bằng nhau chắn các cung bằng nhau.
a) Đúng (theo hệ quả b).
b) Sai. Vì trong cùng một đường tròn, các góc nội tiếp cùng chắn 1 cung hoặc chắn các cung bằng nhau thì bằng nhau.
Trong một đường tròn, các góc nội tiếp bằng nhau chưa chắc cùng chắn một cung.
Chọn đáp án D
(góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó )
Phương án A, B, C đúng
Khẳng định đúng: a