K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Chọn C

ĐKXĐ:

Bảng xét dấu

Dựa vào bảng xét dấu và đối chiếu điều kiện, ta có tập nghiệm của bất phương trình đã cho là

6 tháng 4 2019

Chị ơi phần a giải 2 theo 2TH. TH1 là 3 đều  lớn hơn 0 và TH2 là 2  âm 1 dương

Phần b giải 3 TH: TH1 cả 3 nhỏ hơn 0

                              TH2 :2 dương 1 âm

                              TH3 : 1 âm 2 dương

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta  = 529 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)

Ta có bảng xét dấu như sau

 

Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)

b) \( - 6{x^2} + 11x > 10 \Leftrightarrow  - 6{x^2} + 11x - 10 > 0\)

Xét tam thức \(f\left( x \right) =  - 6{x^2} + 11x - 10\) có \(\Delta  =  - 119 < 0\)và có \(a =  - 6 < 0\)

Ta có bảng xét dấu như sau

 

Vậy bất phương trình vô nghiệm

c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)

Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta  =  - 12 < 0\)và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy bất phương trình có vô số nghiệm

d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta  = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)

Ta có bảng xét dấu như sau

 

Vậy nghiệm của bất phương trình là \(x = 5\)

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là  A. x = -1          B. x = 0           C. x = 1           D. x = 2  Câu 41Tập nghiệm của phương trình x + 1 = 5 là  A. 4 B. 4 ; - 6. C. -4 ; 6. D.  -6 Câu 42Số đo mỗi góc của lục giác đều là :  A. 1500. B. 1080. C. 1000. D. 1200. Câu 43 Phương trình nào sau đây...
Đọc tiếp

Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là

 

 

A. x = -1         

 

B. x = 0          

 

C. x = 1          

 

D. x = 2 

 

Câu 41

Tập nghiệm của phương trình x + 1 = 5 là

 

 

A. 4

 

B. 4 ; - 6.

 

C. -4 ; 6.

 

D.  -6

 

Câu 42

Số đo mỗi góc của lục giác đều là :

 

 

A. 1500.

 

B. 1080.

 

C. 1000.

 

D. 1200.

 

Câu 43

 Phương trình nào sau đây là phương trình bậc nhất một ẩn ?

 

 

A. 0x +  25  = 0.

 

B. x + y = 0.           

 

C.           

 

D. 5x + = 0.

 

Câu 44

Tam giác ABC, có A B = 6 cm, AC =  8cm, BC = 10 cm, đường phân giác AD thì số đo độ dài đoạn BD và CD thứ tự bằng :

 

 

A. 3 ; 7.

 

B. 4 ; 6.

 

C. .

 

D. .

 

Câu 45

Trong các khẳng định sau, khẳng định nào không đúng

 

 

A. Hình hộp chữ nhật là hình lăng trụ đứng.

 

B. Các cạnh bên của hình lăng trụ đứng bằng nhau.

 

C. Hình lăng trụ đứng có đáy là hình bình hành là hình hộp chữ nhật.

 

D. Các mặt bên của hình lăng trụ đứng là hình chữ nhật.

 

Câu 46

Hãy chọn câu đúng.

 

 

A. Phương trình x = 0 và x(x + 1) là hai phương trình tương đương

 

B. kx + 5 = 0 là phương trình bậc nhất một ẩn số

 

C. Trong một phương trình ta có thể chuyển một hạng tử vế này sang vế kia đồng thời đổi dấu của hạng tử đó

 

D. Phương trình x = 2 và |x| = 2 là hai phương trình tương đương

 

Câu 47

Tam giác ABC, có A B = 3 cm, AC =  4cm, đường phân giác AD thì tỉ số hai đoạn BD và CD bằng :

 

 

A. 6.

 

B. 12.

 

C. .

 

D. .

 

Câu 48

 Một hình chữ nhật có chu vi 20 m, nếu tăng chiều dài 2 m và tăng chiều rộng 1 m thì diện tích tăng 16 m2. Chiều dài của hình chữ nhật là:

 

 

A. 8 m.

 

B. 12 m         

 

C. 6 m           

 

D. 4 m         

 

Câu 49

 Số nghiệm của phương trình |2x – 3| - |3x + 2| = 0 là

 

 

A. 3

 

B. 2                

 

C. 0                

 

D. 1                

 

Câu 50

Hình lập phương có diện tích toàn phần bằng 54cm2. Thì thể tích bằng?

 

 

A. 9 cm3.

 

B. 25 cm3.

 

C. 27 cm3.

 

D. 54 cm3.

1
21 tháng 7 2021

(x-2)^2 - x^2 - 8x+3 >= 0

x^2-4x+4 - x^2-8x +3 >=0

7>=12x

x<=12/7

x nguyên lớn nhất là 1

Đề thi môn toán 8 học kì 2Câu 1 Giải các phương trình sau:a) x-2=0, b) (x+5)(2x-7)=0. =c) . 5x/x+2 =4Câu 2. a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a )2x-6>_(hoặc bằng)=0. b) Cho a<b. Chứng minh: -3a+7> -3b+7Câu 3 (1,0 điểm). Giải bài toán bằng cách lập phương trình:Một người đi ôtô từ huyện Cao Lãnh đến huyện Thanh Bình với vận tốc 40 km/h. Sau khi đi đến huyện Thanh Bình...
Đọc tiếp

Đề thi môn toán 8 học kì 2

Câu 1 Giải các phương trình sau:

a) x-2=0, b) (x+5)(2x-7)=0. =c) . 5x/x+2 =4

Câu 2. a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a )2x-6>_(hoặc bằng)=0. 

b) Cho a<b. Chứng minh

: -3a+7> -3b+7

Câu 3 (1,0 điểm). Giải bài toán bằng cách lập phương trình:

Một người đi ôtô từ huyện Cao Lãnh đến huyện Thanh Bình với vận tốc 40 km/h. Sau khi đi đến huyện Thanh Bình người đó giải quyết công việc hết 30 phút .rồi quay về huyện Cao Lãnh với vận tốc 50 km/h. Biết thời gian cả đi và về hết 2 giờ 18 phút (kể cả thời gian giải quyết công việc). Tính quãngđường từ huyện Cao Lãnh đến huyện Thanh Bình.

Câu 4 (1,0 điểm). Một container chứa hàng có kích thước như sau: dài 6m, rộng 2,4m; cao 2,6m. Tínhthể tích của thùng container.

Câu 5 (3,0 điểm). Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Kẻ AH vuông góc với BC tại H

a) Chứng minh: tamgiácHBA đồng dạng với tamgiácABC.

b) Chứng minh: AB2 =BH.BC

c) Tính độ dài cạnh BC, BH.

Phân giác của góc ACB cắt AH tại E và cắt AB tại D. Tính tỉ số diện tích của tam giác ACD và tam giácHCE.

Giúp mình với mn ơii .mai mình nộp r

GIUP VOI MOI NGUOI OI .CUU EM VOIIIIII !!!!!!!!!!

 

1
6 tháng 5 2021

câu 1 

a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)

 

6 tháng 5 2021

c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2

=> 5x=4(x+2)

=>5x-4x=8

=>x=8(tmđk)